ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-25
    Description: The effect of bottom roughness on setup dynamics was investigated using high-resolution observations across a laboratory fringing reef profile with roughness elements scaled to mimic the frictional wave dissipation of a coral reef. Results with roughness were compared with smooth bottom runs across 16 offshore wave and still water level conditions. The time-averaged and depth-integrated force balance was evaluated from observations collected at 17 locations along the flume and consisted of cross-shore pressure and radiation stress gradients whose sum was balanced by quadratic mean bottom stresses. The introduction of roughness had two primary effects. First, for runs with roughness, frictional wave dissipation occurred on the reef slope offshore of the breakpoint, reducing wave heights prior to wave breaking. Second, offshore-directed mean bottom stresses were generated by the interaction of the combined wave–current velocity field with the roughness elements. These two mechanisms acted counter to one another. Frictional wave dissipation resulted in radiation stress gradients that were predicted to generate 18% (on average) less setup on the reef flat for rough runs than for smooth runs when neglecting mean bottom stresses. However, mean bottom stresses increased the predicted setup by 16% on average for runs with roughness. As a result, setup on the reef flat was comparable (7% mean difference) between corresponding rough and smooth runs. These findings are used to assess prior results from numerical modeling studies of reefs and also to discuss the broader implications for how large roughness influences setup dynamics in the nearshore zone.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-03
    Description: In response to rising CO2 concentrations, climate models predict that globally averaged precipitation will increase at a much slower rate than water vapor. However, some observational studies suggest that global-mean precipitation and water vapor have increased at similar rates. While the modeling results emphasize changes at multidecadal time scales where the anthropogenic signal dominates, the shorter observational record is more heavily influenced by internal variability. Whether the physical constraints on the hydrological cycle fundamentally differ between these time scales is investigated. The results of this study show that while global-mean precipitation is constrained by radiative cooling on both time scales, the effects of CO2 dominate on multidecadal time scales, acting to suppress the increase in radiative cooling with warming. This results in a smaller precipitation change compared to interannual time scales where the effects of CO2 forcing are small. It is also shown that intermodel spread in the response of atmospheric radiative cooling (and thus global-mean precipitation) to anthropogenically forced surface warming is dominated by clear-sky radiative processes and not clouds, while clouds dominate under internal variability. The findings indicate that the sensitivity of the global hydrological cycle to surface warming differs fundamentally between internal variability and anthropogenically forced changes and this has important implications for interpreting observations of the hydrological sensitivity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-01
    Description: This study presents a gridded meteorology intercomparison using the State of Hawaii as a testbed. This is motivated by the goal to provide the broad user community with knowledge of interproduct differences and the reasons differences exist. More generally, the challenge of generating station-based gridded meteorological surfaces and the difficulties in attributing interproduct differences to specific methodological decisions are demonstrated. Hawaii is a useful testbed because it is traditionally underserved, yet meteorologically interesting and complex. In addition, several climatological and daily gridded meteorology datasets are now available, which are used extensively by the applications modeling community, thus an intercomparison enhances Hawaiian specific capabilities. We compare PRISM climatology and three daily datasets: new datasets from the University of Hawai‘i and the National Center for Atmospheric Research, and Daymet version 3 for precipitation and temperature variables only. General conclusions that have emerged are 1) differences in input station data significantly influence the product differences, 2) explicit prediction of precipitation occurrence is crucial across multiple metrics, and 3) attribution of differences to specific methodological choices is difficult and limits the usefulness of intercomparisons. Because generating gridded meteorological fields is an elaborate process with many methodological choices interacting in complex ways, future work should 1) develop modular frameworks that allows users to easily examine the breadth of methodological choices, 2) collate available nontraditional high-quality observational datasets for true out-of-sample validation and make them publicly available, and 3) define benchmarks of acceptable performance for methodological components and products.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-01
    Description: Almost all daily rainfall time series contain gaps in the instrumental record. Various methods can be used to fill in missing data using observations at neighboring sites (predictor stations). In this study, five computationally simple gap-filling approaches—normal ratio (NR), linear regression (LR), inverse distance weighting (ID), quantile mapping (QM), and single best estimator (BE)—are evaluated to 1) determine the optimal method for gap filling daily rainfall in Hawaii, 2) quantify the error associated with filling gaps of various size, and 3) determine the value of gap filling prior to spatial interpolation. Results show that the correlation between a target station and a predictor station is more important than proximity of the stations in determining the quality of a rainfall prediction. In addition, the inclusion of rain/no-rain correction on the basis of either correlation between stations or proximity between stations significantly reduces the amount of spurious rainfall added to a filled dataset. For large gaps, relative median errors ranged from 12.5% to 16.5% and no statistical differences were identified between methods. For submonthly gaps, the NR method consistently produced the lowest mean error for 1- (2.1%), 15- (16.6%), and 30-day (27.4%) gaps when the difference between filled and observed monthly totals was considered. Results indicate that gap filling prior to spatial interpolation improves the overall quality of the gridded estimates, because higher correlations and lower performance errors were found when 20% of the daily dataset is filled as opposed to leaving these data unfilled prior to spatial interpolation.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-01
    Description: It is a major challenge to develop gridded precipitation and temperature estimates that adequately resolve the extreme spatial gradients present in the Hawaiian Islands. The challenge is particularly pronounced because the available station networks are irregularly spaced and sparse, creating large uncertainties in gridded spatial meteorological estimates. Here a 100-member, daily ensemble of precipitation and temperature estimates over the Hawaiian Islands for the period 1990–2014 at 1-km grid resolution is developed. First, an intermediary ensemble estimate of the monthly climatological precipitation and temperature is created, and those climatological surfaces are used to inform daily anomaly interpolation. This climatologically aided interpolation (CAI) method extends our initial ensemble system developed for the continental United States. This study demonstrates that direct interpolation of daily precipitation values is inferior to the CAI methodology, particularly over longer time periods (from years to decades). Daily interpolation performs better for short time periods (e.g., 1 month or less) or when the precipitation distribution substantially diverges from climatology. The CAI ensemble is able to reproduce observed precipitation and temperature patterns, including precipitation occurrence. Leave-one-out cross-validation results illustrate that the ensemble has 1) minimal bias for precipitation and temperature; 2) a mean absolute error of 2.5 mm day−1, 1.0 K, and 2.2 K for precipitation and mean and diurnal temperature, respectively; 3) a mean absolute error of 3.3 mm day−1 for the standard deviation of precipitation; and 4) nearly unbiased probability distributions across multiple thresholds of precipitation intensity. Additionally, the ensemble provides estimates of uncertainty across the distributions with increasing uncertainty for higher percentiles.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-01
    Description: Spatially continuous data products are essential for a number of applications including climate and hydrologic modeling, weather prediction, and water resource management. In this work, a distance-weighted interpolation method used to map daily rainfall and temperature in Hawaii is described and assessed. New high-resolution (250 m) maps were developed for daily rainfall and daily maximum (Tmax) and minimum (Tmin) near-surface air temperature for the period 1990–2014. Maps were produced using climatologically aided interpolation, in which station anomalies were interpolated using an optimized inverse distance weighting approach and then combined with long-term means to produce daily gridded estimates. Leave-one-out cross validation was performed to assess the quality of the final daily grids. The median absolute prediction error for rainfall was 0.1 mm with an average overprediction (+0.6 mm) on days when total rainfall was less than 1 mm. On days with total rainfall greater than 1 mm, median absolute prediction errors were 2 mm and rainfall was typically underpredicted above the 10-mm threshold. For daily temperature, median absolute prediction errors were 3.1° and 2.8°C for Tmax and Tmin, respectively. On average, this method overpredicted Tmax (+1.1°C) and Tmin (+1.5°C), and errors varied considerably among stations. Errors for all variables exhibited significant seasonal variations. However, the annual range of errors was small. The methods presented here provide an effective approach for mapping daily weather fields in a topographically diverse region and improve on previous products in their spatial resolution, time period of coverage, and use of data.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-15
    Description: Consistent increases in the strength and frequency of occurrence of the trade wind inversion (TWI) are identified across a ~40-yr period (1973–2013) in Hawaii. Changepoint analysis indicates that a marked shift occurred in the early 1990s resulting in a 20% increase in the mean TWI frequency between the periods 1973–90 and 1991–2013, based on the average of changes at two sounding stations and two 6-month (dry and wet) seasons. Regional increases in the atmospheric subsidence are identified in four reanalysis datasets over the same ~40-yr time period. The post-1990 period mean for the NCEP–NCAR reanalysis shows increases in subsidence of 33% and 41% for the dry and wet seasons, respectively. Good agreement was found between the time series of TWI frequency of occurrence and omega, suggesting that previously reported increases in the intensity of Hadley cell subsidence are driving the observed increases in TWI frequency. Correlations between omega and large-scale modes of internal climate variability such as El Niño–Southern Oscillation (ENSO) and the Pacific decadal oscillation (PDO) do not explain the abrupt shift in TWI frequency in the early 1990s in both seasons. Reported increases in TWI frequency of occurrence may provide some explanation for climate change–related precipitation change at high elevations in Hawaii. On average, post-1990 rainfall was 6% lower in the dry season and 31% lower in the wet season at nine high-elevation sites. Rainfall was significantly correlated with TWI frequency at all of the stations analyzed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-15
    Description: Climate models have emerged as an essential tool for studying the earth’s climate. Global models are computationally expensive, and so a relatively coarse spatial resolution must be used within the model. This hinders direct application for many impacts studies that require regional and local climate information. A regional model with boundary conditions taken from the global model achieves a finer spatial scale for local analysis. In this paper the authors propose a new method for assessing the value added by these higher-resolution models, and they demonstrate the method within the context of regional climate models (RCMs) from the North American Regional Climate Change Assessment Program (NARCCAP) project. This spectral approach using the discrete cosine transformation (DCT) is based on characterizing the joint relationship between observations, coarser-scale models, and higher-resolution models to identify how the finer scales add value over the coarser output. The joint relationship is computed by estimating the covariance of the data sources at different spatial scales with a Bayesian hierarchical model. Using this model the authors can then estimate the value added by each data source over the others. For the NARCCAP data, they find that the higher-resolution models add value starting with low wavenumbers corresponding to features 550 km apart (or 11 total 50-km grid boxes per cycle) all the way down to higher wavenumbers at 150 km apart (3 grid boxes per cycle).
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1980-09-01
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-01
    Description: Spectral analyses of two 3.5-yr mooring records from the Timor Sea quantified the coherence of mode-0 (surface) and mode-1 (internal) tides with the astronomical tidal potential. The noncoherent tides had well-defined variance and were most accurately quantified for tidal species (as opposed to constituents) in long records (〉6 months). On the continental slope (465 m), the semidiurnal mode-0 and mode-1 velocity and mode-1 pressure variance were 95%, 68%, and 56% coherent, respectively. On the continental shelf (145 m), the semidiurnal mode-0 and mode-1 velocity and mode-1 pressure variance were 98%, 34%, and 42% coherent, respectively. The response method produced time series of the semidiurnal coherent and noncoherent tides. The spectra and decorrelation time scales of the semidiurnal tidal amplitudes were similar to those of the barotropic mean flow and mode-1 eigenspeed (~4 days), suggesting local mesoscale variability shapes noncoherent tidal variability. Over long time scales (〉30 days), mode-1 sea surface displacement amplitudes were positively correlated with mode-1 eigenspeed on the shelf. At both moorings, internal tides were likely modulated during both generation and propagation. Self-prediction using the response method enabled about 75% of semidiurnal mode-1 sea surface displacement to be predicted 2.5 days in advance. Improved prediction models will require realistic tide–topography coupling and background variability with both short and long time scales.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...