ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-01
    Description: Satellite retrievals of surface evaporation and precipitation from the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) dataset are used to document the distribution of evaporation, precipitation, and freshwater flux over the Mediterranean and Black Seas. An analysis is provided of the major scales of temporal and spatial variability of the freshwater budget and the atmospheric processes responsible for the water flux changes. The satellite evaporation fluxes are compared with fields from three different reanalysis datasets [40-yr ECMWF Re-Analysis (ERA-40), ERA-Interim, and NCEP]. The results show a water deficit in the Mediterranean region that averages to about 2.4 mm day−1 but with a significant east–west asymmetry ranging from 3.5 mm day−1 in the eastern part to about 1.1 mm day−1 in the western part of the basin. The zonal asymmetry in the water deficit is driven by evaporation differences that are in turn determined by variability in the air–sea humidity difference in the different parts of the Mediterranean basin. The Black Sea freshwater deficit is 0.5 mm day−1, with maxima off the northern coast (0.9 mm day−1) that are attributed to both evaporation maxima and precipitation minima there. The trend analysis of the freshwater budget shows that the freshwater deficit increases in the 1988–2005 period. The prominent increase in the eastern part of the basin is present in the satellite and all three reanalysis datasets. The water deficit is due to increases in evaporation driven by increasing sea surface temperature, while precipitation does not show any consistent trends in the period. Similarly, in the Black Sea, trends in the freshwater deficit are mainly due to evaporation, although year-to-year variability is due to precipitation patterns.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-01-15
    Description: A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-07-15
    Description: In the first part of the paper, a high space–time resolution (1° latitude/longitude and daily) dataset of the turbulent fluxes at the ocean surface is used to estimate and study the seasonal to annual near-global maps of the decorrelation scales of the latent and sensible heat fluxes. The decorrelation scales describe the temporal and spatial patterns that dominate the flux fields (within a bandpass window) and hence reveal the dominant variability in the air–sea interaction. Regional comparison to the decorrelation scales of the flux-related variables such as the wind stress, the humidity difference, and the SST identifies the main mechanism responsible for the variability in each flux field. In the second part of the paper, the decorrelation scales are used to develop a method for filling missing values in the dataset that result from the incomplete satellite coverage. Weight coefficients in a linear regression function are determined from the spatial and temporal decorrelations and are functions of zonal and meridional distance and time. Therefore they account for all spatial and temporal patterns on scales greater than 1 day and 1° latitude/longitude and less than 1 yr and the ocean basin scale. The method is evaluated by simulating the missing-value distribution of the Goddard Satellite-Based Surface Turbulent Fluxes, version 2 (GSSTF2) dataset in the NCEP SST, the International Satellite Climatology Project (ISCCP)-FD (fluxes calculated using D1 series) surface radiation, and the Global Precipitation Climatology Project (GPCP) datasets and by comparing the filled datasets to the original ones. Main advantages of the method are that the decorrelation scales are unrestricted functions of space and time; only information internal to the flux field is used in the interpolation scheme, and the computation cost of the method is low enough to facilitate its use in similar large datasets.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-10-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-05-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-11
    Description: While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 32(13), (2019): 3883-3898, doi:10.1175/JCLI-D-18-0735.1.
    Description: While it has generally been understood that the production of Labrador Sea Water (LSW) impacts the Atlantic meridional overturning circulation (MOC), this relationship has not been explored extensively or validated against observations. To explore this relationship, a suite of global ocean–sea ice models forced by the same interannually varying atmospheric dataset, varying in resolution from non-eddy-permitting to eddy-permitting (1°–1/4°), is analyzed to investigate the local and downstream relationships between LSW formation and the MOC on interannual to decadal time scales. While all models display a strong relationship between changes in the LSW volume and the MOC in the Labrador Sea, this relationship degrades considerably downstream of the Labrador Sea. In particular, there is no consistent pattern among the models in the North Atlantic subtropical basin over interannual to decadal time scales. Furthermore, the strong response of the MOC in the Labrador Sea to LSW volume changes in that basin may be biased by the overproduction of LSW in many models compared to observations. This analysis shows that changes in LSW volume in the Labrador Sea cannot be clearly and consistently linked to a coherent MOC response across latitudes over interannual to decadal time scales in ocean hindcast simulations of the last half century. Similarly, no coherent relationships are identified between the MOC and the Labrador Sea mixed layer depth or the density of newly formed LSW across latitudes or across models over interannual to decadal time scales.
    Description: FL and MSL are thankful for the financial support from the National Science Foundation (NSF) Physical Oceanography Program (NSF-OCE-12-59102, NSF-OCE-12-59103). The NCAR contribution was supported by the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) under Climate Variability and Predictability Program (CVP) Grant NA13OAR4310138 and by the NSF Collaborative Research EaSM2 Grant OCE-1243015. NCAR is sponsored by the NSF. NPH is supported by NERC programs U.K. OSNAP (NE/K010875) and ACSIS (National Capability, NE/N018044/1). Y-OK is supported by NOAA CPO CVP (NA17OAR4310111) and NSF EaSM2 grant (OCE-1242989). AR is supported by NASA-ROSES Modeling, Analysis and Prediction 2016 NNX16AC93G-MAP. RZ is supported by NOAA/OAR. Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). Data from the RAPID-MOCHA-WBTS array funded by NERC, NSF and NOAA are freely available from www.rapid.ac.uk/rapidmoc. We thank Stephen Griffies for providing access to the GFDL-MOM025 COREII simulation output and Matthew Harrison and Xiaoqin Yan for their comments on the manuscript. We also thank the anonymous reviewers for their valuable comments.
    Description: 2020-06-11
    Keywords: North Atlantic Ocean ; Deep convection ; Meridional overturning circulation ; Model comparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...