ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-01
    Description: Transport of freshwater from the Labrador Shelf into the interior Labrador Sea has the potential to impact deep convection via its influence on the salinity of surface waters. To examine this transport, the authors deployed two underwater gliders on a mission to traverse the continental shelf break multiple times between 5 July and 22 August 2014, the period when Arctic meltwater has historically peaked in transport down the Labrador Shelf. The field campaign yielded a unique dataset of temperature, salinity, and oxygen across the shelf break to a depth of 1000 m at unprecedented spatial resolution. Two mechanisms of cross-shelf transport were examined: Ekman transport and transport due to mesoscale eddies. Ekman transport is quantified using satellite wind stress and near-surface hydrographic properties, and eddy-induced transport is scaled using a parameterized eddy diffusivity and thickness gradients of layers of uniform potential density, as well as the tracer gradients along those isopycnals. Both the Ekman and eddy terms transport high-oxygen and low-salinity water from the shelf to the Labrador Sea during the field campaign. The influence of the eddy-driven oxygen flux from the shelf to the Labrador Sea on oxygen budgets depends strongly on the size of the region over which this eddy flux converges. The deduced offshore transport of freshwater (4 ± 6 mSv; 1 mSv = 103 m3 s−1) from both Ekman and eddy mechanisms, which is likely at a seasonal maximum during this summertime survey, represents about 3% of the annual-mean freshwater flowing through Hudson and Davis Straits but may be an important component of the total freshwater budget of the interior Labrador Sea.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-24
    Description: The separate impacts of wind stress, buoyancy fluxes, and CO2 solubility on the oceanic storage of natural carbon are assessed in an ensemble of twentieth- to twenty-first-century simulations, using a coupled atmosphere–ocean–carbon cycle model. Time-varying perturbations for surface wind stress, temperature, and salinity are calculated from the difference between climate change and preindustrial control simulations, and are imposed on the ocean in separate simulations. The response of the natural carbon storage to each perturbation is assessed with novel prognostic biogeochemical tracers, which can explicitly decompose dissolved inorganic carbon into biological, preformed, equilibrium, and disequilibrium components. Strong responses of these components to changes in buoyancy and winds are seen at high latitudes, reflecting the critical role of intermediate and deep waters. Overall, circulation-driven changes in carbon storage are mainly due to changes in buoyancy fluxes, with wind-driven changes playing an opposite but smaller role. Results suggest that climate-driven perturbations to the ocean natural carbon cycle will contribute 20 Pg C to the reduction of the ocean accumulated total carbon uptake over the period 1860–2100. This reflects a strong compensation between a buildup of remineralized organic matter associated with reduced deep-water formation (+96 Pg C) and a decrease of preformed carbon (−116 Pg C). The latter is due to a warming-induced decrease in CO2 solubility (−52 Pg C) and a circulation-induced decrease in disequilibrium carbon storage (−64 Pg C). Climate change gives rise to a large spatial redistribution of ocean carbon, with increasing concentrations at high latitudes and stronger vertical gradients at low latitudes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-01
    Description: This paper documents time mean simulation characteristics from the ocean and sea ice components in a new coupled climate model developed at the NOAA Geophysical Fluid Dynamics Laboratory (GFDL). The GFDL Climate Model version 3 (CM3) is formulated with effectively the same ocean and sea ice components as the earlier CM2.1 yet with extensive developments made to the atmosphere and land model components. Both CM2.1 and CM3 show stable mean climate indices, such as large-scale circulation and sea surface temperatures (SSTs). There are notable improvements in the CM3 climate simulation relative to CM2.1, including a modified SST bias pattern and reduced biases in the Arctic sea ice cover. The authors anticipate SST differences between CM2.1 and CM3 in lower latitudes through analysis of the atmospheric fluxes at the ocean surface in corresponding Atmospheric Model Intercomparison Project (AMIP) simulations. In contrast, SST changes in the high latitudes are dominated by ocean and sea ice effects absent in AMIP simulations. The ocean interior simulation in CM3 is generally warmer than in CM2.1, which adversely impacts the interior biases.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-15
    Description: Despite slow rates of ocean mixing, observational and modeling studies suggest that buoyancy is redistributed to all depths of the ocean on surprisingly short interannual to decadal time scales. The mechanisms responsible for this redistribution remain poorly understood. This work uses an Earth system model to evaluate the global steady-state ocean buoyancy (and related steric sea level) budget, its interannual variability, and its transient response to a doubling of CO2 over 70 years, with a focus on the deep ocean. At steady state, the simple view of vertical advective–diffusive balance for the deep ocean holds at low to midlatitudes. At higher latitudes, the balance depends on a myriad of additional terms, namely mesoscale and submesoscale advection, convection and overflows from marginal seas, and terms related to the nonlinear equation of state. These high-latitude processes rapidly communicate anomalies in surface buoyancy forcing to the deep ocean locally; the deep, high-latitude changes then influence the large-scale advection of buoyancy to create transient deep buoyancy anomalies at lower latitudes. Following a doubling of atmospheric carbon dioxide concentrations, the high-latitude buoyancy sinks are suppressed by a slowdown in convection and reduced dense water formation. This change is accompanied by a slowing of both upper and lower cells of the global meridional overturning circulation, reducing the supply of dense water to low latitudes beneath the pycnocline and the commensurate flow of light waters to high latitudes above the pycnocline. By this mechanism, changes in high-latitude buoyancy are communicated to the global deep ocean on relatively fast advective time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-05-01
    Description: Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (DWBC), one of the primary pathways by which it exits the subpolar gyre, can shed light on the continuity between climate conditions in the formation region and their downstream signal. Using the trajectories of (profiling) autonomous Lagrangian circulation explorer [(P)ALACE] floats, operating between 1996 and 2002, three processes are evaluated for their role in the entry of Labrador Sea Water in the DWBC: 1) LSW is formed directly in the DWBC, 2) eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) a horizontally divergent mean flow advects LSW from the interior to the DWBC. A comparison of the heat flux associated with each of these three mechanisms suggests that all three contribute to the transformation of the boundary current as it transits the Labrador Sea. The formation of LSW directly in the DWBC and the eddy heat flux between the interior Labrador Sea and the DWBC may play leading roles in setting the interannual variability of the exported water mass.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-01
    Description: This study examines the role of processes transporting tracers across the Polar Front (PF) in the depth interval between the surface and major topographic sills, which this study refers to as the “PF core.” A preindustrial control simulation of an eddying climate model coupled to a biogeochemical model [GFDL Climate Model, version 2.6 (CM2.6)– simplified version of the Biogeochemistry with Light Iron Nutrients and Gas (miniBLING) 0.1° ocean model] is used to investigate the transport of heat, carbon, oxygen, and phosphate across the PF core, with a particular focus on the role of mesoscale eddies. The authors find that the total transport across the PF core results from a ubiquitous Ekman transport that drives the upwelled tracers to the north and a localized opposing eddy transport that induces tracer leakages to the south at major topographic obstacles. In the Ekman layer, the southward eddy transport only partially compensates the northward Ekman transport, while below the Ekman layer, the southward eddy transport dominates the total transport but remains much smaller in magnitude than the near-surface northward transport. Most of the southward branch of the total transport is achieved below the PF core, mainly through geostrophic currents. This study finds that the eddy-diffusive transport reinforces the southward eddy-advective transport for carbon and heat, and opposes it for oxygen and phosphate. Eddy-advective transport is likely to be the leading-order component of eddy-induced transport for all four tracers. However, eddy-diffusive transport may provide a significant contribution to the southward eddy heat transport due to strong along-isopycnal temperature gradients.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 90 (2009): 1337-1350, doi:10.1175/2009BAMS2706.1.
    Description: A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.
    Description: Physical Oceanography program of NSF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 968-983, doi:10.1175/2007JPO3807.1.
    Description: Labrador Sea Water (LSW), a dense water mass formed by convection in the subpolar North Atlantic, is an important constituent of the meridional overturning circulation. Understanding how the water mass enters the deep western boundary current (DWBC), one of the primary pathways by which it exits the subpolar gyre, can shed light on the continuity between climate conditions in the formation region and their downstream signal. Using the trajectories of (profiling) autonomous Lagrangian circulation explorer [(P)ALACE] floats, operating between 1996 and 2002, three processes are evaluated for their role in the entry of Labrador Sea Water in the DWBC: 1) LSW is formed directly in the DWBC, 2) eddies flux LSW laterally from the interior Labrador Sea to the DWBC, and 3) a horizontally divergent mean flow advects LSW from the interior to the DWBC. A comparison of the heat flux associated with each of these three mechanisms suggests that all three contribute to the transformation of the boundary current as it transits the Labrador Sea. The formation of LSW directly in the DWBC and the eddy heat flux between the interior Labrador Sea and the DWBC may play leading roles in setting the interannual variability of the exported water mass.
    Description: We are also grateful to the NSF for their support of this research.
    Keywords: Boundary currents ; Water masses ; Ocean circulation ; Lagrangian circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...