ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2014-09-24
    Description: The North Atlantic jet stream during winter 2010 was unusually zonal, so the typically separated Atlantic and African jets were merged into one zonal jet. Moreover, the latitude–height structure and temporal variability of the North Atlantic jet during this winter were more characteristic of the North Pacific. This work examines the possibility of a flow regime change from an eddy-driven to a mixed eddy–thermally driven jet. A monthly jet zonality index is defined, which shows that a persistent merged jet state has occurred in the past, both at the end of the 1960s and during a few sporadic months. The anomalously zonal jet is found to be associated with anomalous tropical Pacific diabatic heating and eddy anomalies similar to those found during a negative North Atlantic Oscillation (NAO) state. A Lagrangian back-trajectory diagnosis of eight winters suggests the tropical Pacific is a source of momentum to the Atlantic and African jets and that this source was stronger during the winter of 2010. The results suggest that the combination of weak eddy variance and fluxes in the North Atlantic, along with strong tropical heating, act to push the jet toward a merged eddy–thermally driven state. The authors also find significant SST anomalies in the North Atlantic, which reinforce the anomalous zonal winds, particularly in the eastern Atlantic.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-01
    Description: Jet streams located on the dynamical tropopause are accompanied by coaligned bands of enhanced potential vorticity (PV) gradients, and these bands can serve as space–time evolving waveguides for synoptic and larger-scale flow. Consideration is given to the detection and examination of the along-flow extent and lateral confinement of the waveguides on the dynamic tropopause (i.e., iso-PV surface) and on tropopause-cutting isentropic surfaces. Thereafter a two-part study is undertaken of the possible interaction between such waveguides (i.e., jet streams). First, a highly idealized theoretical model points to the nature of the dynamical linkage that can exist between perturbations on coaligned waveguides. Second, diagnostic analysis of two observed events helps identify the contemporaneous space–time evolution of the jets and serves to illustrate the nature of the transfer of wave activity from the extratropical waveguide onto a subtropical and a polar waveguide, respectively.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-07-01
    Description: Breaking waves on the tropopause are viewed as potential vorticity (PV) streamers on middle-world isentropic levels. A Northern Hemisphere winter climatology of the streamers’ spatial distribution and meridional orientation is derived from the 40-yr ECMWF Re-Analysis (ERA-40) dataset, and used to assess the nature and frequency of occurrence of breaking synoptic-scale waves. The streamers are grouped into two classes related to the so-called cyclonic (LC2) and anticyclonic (LC1) patterns, and the ambient wind strength and wind shear is also noted. It is shown that the occurrence of cyclonic and anticyclonic PV streamers exhibits a distinct spatial variability in the horizontal and the vertical. The majority of cyclonic PV streamers are found on lower isentropic levels that intersect the tropopause at more poleward latitudes, whereas anticyclonic streamers predominate at higher elevations in the subtropics. An analysis of the streamer patterns for the two phases of the North Atlantic Oscillation (NAO) reveals significant differences in the location and frequency of both cyclonic and anticyclonic streamers in the Euro–Atlantic region on the 310-K isentropic level. Likewise, for the two phases of the ENSO and the Pacific–North American (PNA) pattern, there are marked differences in the frequency pattern of cyclonic streamers. An examination of the tropopause-level hemispheric flow pattern at the time of and prior to a streamer’s formation indicates a linkage to the presence or absence of double jet structures.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...