ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (39)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 6611-6627, doi:10.1175/JCLI-D-16-0291.1.
    Description: The interannual fluctuations of the equatorial thermocline are usually associated with El Niño activity, but the linkage between the thermocline modes and El Niño is still under debate. In the present study, a mode function decomposition method is applied to the equatorial Pacific thermocline, and the results show that the first two dominant modes (M1 and M2) identify two distinct characteristics of the equatorial Pacific thermocline. The M1 reflects a basinwide zonally tilted thermocline related to the eastern Pacific (EP) El Niño, with shoaling (deepening) in the western (eastern) equatorial Pacific. The M2 represents the central Pacific (CP) El Niño, characterized by a V-shaped equatorial Pacific thermocline (i.e., deep in the central equatorial Pacific and shallow on both the western and eastern boundaries). Furthermore, both modes are stable and significant on the interannual time scale, and manifest as the major feature of the thermocline fluctuations associated with the two types of El Niño events. As good proxies of EP and CP El Niño events, thermocline-based indices clearly reveal the inherent characteristics of subsurface ocean responses during the evolution of El Niño events, which are characterized by the remarkable zonal eastward propagation of equatorial subsurface ocean temperature anomalies, particularly during the CP El Niño. Further analysis of the mixed layer heat budget suggests that the air–sea interactions determine the establishment and development stages of the CP El Niño, while the thermocline feedback is vital for its further development. These results highlight the key influence of equatorial Pacific thermocline fluctuations in conjunction with the air–sea interactions, on the CP El Niño.
    Description: This work is jointly supported by the Funds for Creative Research Groups of China (Grant 41521005), the Special Fund for Public Welfare Industry (GYHY201506013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA11010301), and the National Natural Science Foundation of China (Grants 41406033, 41475057, 41376024, 41676013) and the CAS/SAFEA International Partnership Program for Creative Research Teams.
    Description: 2018-01-21
    Keywords: Thermocline ; El Nino
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-09
    Description: Southern China, located in the tropical–subtropical East Asian monsoonal region, presents a unique anticyclonic–cyclonic circulation pattern during extreme heat (EH), obviously different from the typical anticyclone responsible for EH in many other regions. Associated with the evolution of EH in southern China, the anticyclonic–cyclonic anomalies propagate northwestward over the Philippines and southern China. Before the EH onsets, the anticyclonic anomaly dominates southern China, resulting in stronger subsidence over southern China and stronger southerly (southwesterly) flow over the western (northern) margins of southern China. The southerly (southwesterly) flow transports more water vapor to the north of southern China, thus, together with the local stronger subsidence, resulting in drier air condition and accordingly favoring the occurrence of EH. Conversely, after the EH onsets, the cyclonic component approaches southern China and offsets the high temperature. The oscillations of temperature and circulation anomalies over southern China exhibit a periodicity of about 10 days and indicate the influence of a quasi-biweekly oscillation, which originates from the tropical western Pacific and propagates northwestward. Therefore, the 5–25-day-filtered data are extracted to further analyze the quasi-biweekly oscillation. It turns out that the evolution of the filtered circulation remarkably resembles the original anomalies with comparable amplitudes, indicating that the quasi-biweekly oscillation is critical for the occurrence of EH in southern China. The quasi-biweekly oscillation could explain more than 50% of the intraseasonal variance of daily maximum temperature Tmax and vorticity over southern China and 80% of the warming amplitude of EH onsets. The close relationship between the circulation of the quasi-biweekly oscillation and the EH occurrence indicates the possibility of medium-range forecasting for high temperature in southern China.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-24
    Description: Previous studies have suggested that, because of its particular location on the southeastern lee side of mountains, extreme heat (EH) over western north China (WNC) is affected by the foehn phenomenon. In this study, the EH days during summer over this region are categorized into foehn-favorable EH and no-foehn EH, according to whether there are anomalous northwesterlies over mountains, and composite analyses are performed on them. The analyzed results indicate that the no-foehn EH is characterized by an anticyclonic anomaly and a large-scale higher surface air temperature, while the foehn-favorable EH is featured by a cyclonic anomaly to the northeast and a localized higher temperature. Associated with the cyclonic anomaly, northwesterlies prevail over the mountain surface and provide a favorable environment for the occurrence of the foehn effect over WNC, which is located on the southeastern lee side of mountains. That is, both cyclonic and anticyclonic anomalies can induce EH over WNC (i.e., foehn-favorable EH and no-foehn EH, respectively). Further investigation indicates that large-scale cyclonic and anticyclonic anomalies tend to favor local descent and ascent anomalies over the lee side, respectively, through interaction with the particular terrain. Therefore, large-scale circulations and local terrain-induced winds play an offsetting role in affecting the surface air temperatures over WNC, and EH occurs when anomalous large-scale anticyclone or terrain-induced descent dominate. This study implies that attention should be paid to not only the upper-level/large-scale circulations but also to their impact on lower-level/local winds for temperature variability over the places with great topographic relief worldwide.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-23
    Description: The modulation of tropical cyclone (TC) activity by the western North Pacific (WNP) monsoon break is investigated by analyzing the subseasonal evolution of TCs and corresponding circulations, based on 65 years of data from 1950 to 2014. The monsoon break has been identified as occurring over the WNP in early August. The present results show that TC occurrence decreases (increases) remarkably to the east of the Mariana Islands (southeast of Japan) during the monsoon break, which is closely related to local anomalous midtropospheric downward (upward) motion and lower-tropospheric anticyclonic (cyclonic) circulation, in comparison with the previous and subsequent convective periods in late July and mid-August. These changes of TC activity and the corresponding circulation during the monsoon break are more significant in typical monsoon break years when the monsoon break phenomenon is predominant. The reverse changes of TC activity to the east of the Mariana Islands and to the southeast of Japan during the monsoon break are closely associated with the out-of-phase subseasonal evolutions over these two regions from late July to mid-August, which are both contributed to greatly by 10–25-day oscillations. Finally, the roles of midlatitude and tropical disturbances on 10–25-day oscillations are also discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-04
    Description: The Silk Road pattern (SRP), which depicts the teleconnection pattern along the Asian jet, has been extensively investigated and commonly described as the leading mode of upper-tropospheric meridional wind anomalies in summer. In this study, the SRP is identified as having a significant relationship with the meridional displacement of the Asian jet (JMD), which manifests as the leading mode of upper-tropospheric zonal wind anomalies. This significant relationship is confirmed by the correlation coefficient between the indices for JMD and SRP, which is 0.39 and reaches statistical significance at the 0.01 level. When the Asian jet is in a northward (southward) displacement, the phase of SRP tends to be shown as anticyclonic (cyclonic) anomalies over western Asia and East Asia and cyclonic (anticyclonic) anomalies over Europe and central Asia. The authors propose an internal atmospheric mechanism for this relationship. In addition, it is found that the JMD is significantly affected by the tropical surface temperature anomalies. In particular, the negative (positive) SST anomalies in the tropical central and eastern Pacific of the preceding spring lead to significant cooler (warmer) tropical tropospheric temperatures in summer and may induce the northward (southward) displacement of the Asian jet through modifying the meridional gradient of tropospheric temperatures. The tropical tropospheric temperature anomalies may also affect the SRP through the JMD.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-03
    Description: Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-11
    Description: South China experiences extreme heat (EH) most frequently in eastern China. This study specifically explores the large-scale circulation anomalies associated with long-lived EH events in south China. The results show that there is an anomalous cyclone (anticyclone) and active (inactive) convection over south China (the western Pacific) before the EH onset; then, an anticyclone develops and moves northwestward and dominates over south China on the onset day. The anomalous anticyclone maintains its strength over south China and then diminishes and is replaced by another cyclone migrating from the western Pacific after the final day of the EH event. Consequently, the temperature increases over south China around the onset day and is anomalously warm for approximately 10 days on average and then decreases shortly thereafter. The fluctuating anomalies over south China and the western Pacific are intimately related to two intraseasonal oscillation (ISO) modes, namely, the 5–25- and 30–90-day oscillations, which originate from the tropical western Pacific and propagate northwestward. The 5–25-day oscillation is vital to triggering and terminating EH, accounting for approximately half of the original temperature and circulation anomaly transitions. The 30–90-day oscillation favors the persistent warming during EH events, accounting for approximately one-third of the original prolonged warming and anticyclonic anomaly. This result suggests that different ISO modes play crucial roles at different stages of the events. Moreover, a higher annual frequency of long-lived EH days in south China is associated with the transition phase from El Niño to La Niña. It is suggested that both medium-range and interannual forecasting of long-lived EH in south China are possible.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-12-11
    Description: A significant decadal change is detected in the break of the western North Pacific summer monsoon (WNPSM) around 2002/03. For the period 1979–2002, the monsoon break occurs in early August, accompanied by noticeable convection suppression over the ocean to the east of the Mariana Islands (10°–20°N, 140°–160°E). However, for the period 2003–11, the monsoon break there is delayed until mid-August. This decadal change is attributable to the differences in the evolution of the WNPSM. Over this break region, convection becomes weaker after its peak in late July for the former period, and the monsoon break appears in early August. In contrast, for the latter period, convection continues strengthening in late July and reaches its peak in early August, and the monsoon break is delayed until mid-August. The differences in the evolution of sea surface temperature (SST) in the western Pacific warm pool region are responsible for the decadal change in the evolution of the WNPSM. In contrast to the former period, for the latter period the southern extent of the warm pool is remarkably warmed, and tends to be higher than the northern extent in mid- and late July, which enhances atmospheric convection nearby but inhibits the development of convection over the northern extent through a local meridional circulation. As the SST in the northern extent continues warming and becomes higher than that in the southern extent, the convection over the northern extent reaches its maximum intensification in early August. The presented results highlight that the spatial pattern of SST changes can modulate the subseasonal evolution of the WNPSM.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-19
    Description: The Yangtze River basin (YRB), a typical East Asian monsoon region, experiences a large year-to-year variability in summer precipitation and is subject to both floods and droughts. There is a well-known seesaw relationship in precipitation between the tropical western North Pacific and the YRB, but more than half of the variance in precipitation in the YRB cannot be explained by this seesaw pattern. The authors therefore investigated other physical factors that might affect precipitation in the YRB. The results indicate that the northeasterly anomaly in the lower troposphere to the north of the YRB plays an important role in the variability in precipitation. This northeasterly anomaly is paired with the southwesterly anomaly to the south of the YRB. They both play an important role in water vapor accumulation over the YRB and intensify the meridional gradient of the equivalent potential temperature θe over the YRB by bringing dry and cool air from the north and wet air from the south. This intensified θe gradient favors convective instability and heavier rainfall in the YRB, as previous studies on mei-yu weather have indicated. Furthermore, it is found that the zonally oriented teleconnection along the Asian westerly jet and the meridional displacement of the jet can affect circulation in the lower troposphere and precipitation in the YRB. These results highlight the role of extratropical circulation anomalies and thus contribute to a more comprehensive understanding of the variability of precipitation in the YRB.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-06
    Description: Previous studies have found a link between north China and Indian rainfall during summer, with significantly increased rainfall in north China related to a stronger Indian summer monsoon. This link is weakened after the late 1970s, generally attributed to the reduced magnitude of interannual variability in the Indian summer rainfall. This study reveals a similar change in this rainfall link in early summer after the late 1970s. Related to a heavier Indian early summer rainfall, rainfall in north China enhances significantly before the late 1970s but not thereafter. The change in rainfall teleconnection is caused by the weakened impact on north China rainfall of a midlatitude wave train along the Asian jet in the upper troposphere. After the late 1970s, the portion of the wave train over East Asia displaces eastward, leading to an eastward shift in the associated ascending motion and, subsequently, enhanced rainfall from north China to the Yellow Sea. Moreover, the change in the midlatitude wave train is attributed to the change in the basic state over East Asia (i.e., a northward shift of the East Asian upper-tropospheric westerly jet after the late 1970s). The latter reduces stationary Rossby wavenumber and increases wavelength of the midlatitude wave train, leading to an eastward shift of the wave train over East Asia. Therefore, in this study a mechanism is proposed for the change in early summer, different from the previous mechanism for the entire summer period.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...