ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (16)
  • 1
    Publikationsdatum: 2017-02-02
    Beschreibung: The influences of different types of Pacific warming, often classified as the eastern Pacific (EP) and central Pacific (CP) El Niño events, on Madden–Julian oscillation (MJO) activity over the Indian Ocean were investigated. Accompanied by relatively unstable (stable) atmospheric stratification induced by enhanced (reduced) moisture and moist static energy (MSE) in the lower troposphere, strengthened (weakened) MJO convection was observed in the initiation and eastward-propagation stages during CP (EP) El Niño events. To examine the key processes resulting in the differences in low-level moistening and column MSE anomalies over the Indian Ocean associated with the two types of El Niño, the moisture and column MSE budget equations were diagnosed using the reanalysis dataset ERA-Interim. The results indicate that the enhanced horizontal advection in the CP El Niño years plays an important role in causing a larger moisture and MSE growth rate over the MJO initiation area during CP El Niño events than during EP El Niño events. The increases in horizontal moisture and MSE advection primarily result from advection by mean flow across the enhanced intraseasonal moisture and MSE gradient, as well as by intraseasonal circulation across the mean moisture and MSE gradient associated with the CP El Niño. In the eastward development stage, the enhanced preconditioning comes from positive moisture and MSE advection anomalies in the CP El Niño events. Meanwhile, the strengthened MJO-related convection over the central-eastern Indian Ocean is maintained by increased atmospheric radiative heating and surface latent heat flux during the CP El Niño compared to the EP El Niño events.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-08-08
    Beschreibung: By analyzing observation-based high-resolution surface air temperature (SAT) data over the Asian monsoon region (here called “monsoon Asia”) for 1981–2007, the modulation by boreal summer intraseasonal oscillation (BSISO) of heat wave (HW) occurrence is examined. Strong SAT variability and a high probability of HW occurrence on intraseasonal time scales are found consistently in the densely populated regions over central India (CI), the Yangtze River valley in China (YR), Japan (JP), and the Korean Peninsula (KP). The two distinct BSISO modes (30–60-day BSISO1 and 10–30-day BSISO2) show different contributions to HW occurrence in monsoon Asia. A significant increase in HW occurrence over CI (YR) is observed during phases 2–3 (8–1) of BSISO2 when the 10–30-day anticyclonic and descending anomaly induce enhanced upward thermal heating and sensible heat flux (warm advection) around the areas. On the other hand, the northeastward propagating BSISO1 is closely connected to the increased HW probability over JP and KP. During phases 7–8 of BSISO1, the 30–60-day subsidence along with the low-level anticyclonic anomaly moves into northeastern Asia, leading to enhanced diabatic (adiabatic) warming near surface in JP (KP). Analysis of a three-dimensional streamfunction tendency equation indicates that diabatic cooling induced by the BSISO-related suppressed convections is the main forcing term of anticyclonic anomaly although it is largely offset by the decreased static stability associated with adiabatic warming. The BSISO-related vorticity advection leads to an anticyclonic (cyclonic) tendency to the northwestern (southeastern) part of the center of anticyclonic anomaly, favoring northwestward development of the BSISO anomalous circulations and thus providing a favorable condition for HW occurrence over the western Pacific–East Asia sector.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-10-05
    Beschreibung: This study examined multidecadal changes in the amplitude of the boreal-winter Madden–Julian oscillation (MJO) over the twentieth century using two century-long reanalysis datasets (20CR and ERA-20C). Both revealed reasonable MJO variability compared to other state-of-the-art reanalysis datasets. We detected pronounced multidecadal variations along with an increasing trend in MJO amplitude during the period 1900–2009 in both datasets, although this linear trend was less significant in the reconstructed MJO index proposed by Oliver and Thompson. The two twentieth-century reanalysis datasets and the Oliver–Thompson MJO index consistently showed the intensified amplitude of MJO precipitation and circulation in the later decades (1970–99) compared to the earlier decades (1920–49). The most significant enhancement of MJO precipitation in the later decades appeared over the western Pacific warm pool. To understand the mechanisms controlling the changes in western Pacific MJO precipitation amplitude over the twentieth century, we diagnosed the moisture budget equation. The enhanced MJO precipitation variability in the later decades mainly came from increased moisture associated with a strengthened low-level convergence anomaly working on background mean moisture [−(q¯∇⋅V′)]. Further diagnosis showed that the effect of anomalous circulation (∇ ⋅ V′) change on the MJO precipitation amplitude change over the twentieth century was about an order larger than that of mean moisture (q¯) change, different from the mechanisms (i.e., increased gradient of q¯) responsible for the intensified MJO precipitation amplitude under future warmer climate. The enhanced MJO circulation anomalies during 1970–99 may be caused by an enhanced diabatic heating anomaly, offset partly by the increased mean static stability.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-03-23
    Beschreibung: In the summer of 2018, Northeast Asia experienced a heatwave event that broke the existing high-temperature records in several locations in Japan, the Korean Peninsula, and northeastern China. At the same time, an unusually strong Madden–Julian oscillation (MJO) was observed to stay over the western Pacific warm pool. Based on reanalysis diagnosis, numerical experiments, and assessments of real-time forecast data from two subseasonal-to-seasonal (S2S) models, we discovered the importance of the western Pacific MJO in the generation of this heatwave event, as well as its predictability at the subseasonal time scale. During the prolonged extreme heat period (11 July–14 August), a high pressure anomaly with variability at the intraseasonal (30–90 days) time scale appeared over Northeast Asia, causing persistent adiabatic heating and clear skies in this region. As shown in the composites of MJO-related convection and circulation anomalies, the occurrence of this 30–90-day high anomaly over Northeast Asia was linked with an anomalous wave train induced by tropical heating associated with the western tropical Pacific MJO. The impact of the MJO on the heatwave was further confirmed by sensitivity experiments with a coupled GCM. As the western Pacific MJO-related components were removed by nudging prognostic variables over the tropics toward their annual cycle and longer time scales (〉90 days) in the coupled GCM, the anomalous wave train along the East Asian coast disappeared and the surface air temperature in Northeast Asia lowered. The MJO over the western Pacific warm pool also influenced the predictability of the extratropical heatwave. Our assessments of two S2S models’ real-time forecasts suggest that the extremity of this Northeast Asian heatwave can be better predicted 1–4 weeks in advance if the enhancement of MJO convection over the western Pacific warm pool is predicted well.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-07-15
    Beschreibung: The moisture budget associated with the eastward-propagating Madden–Julian oscillation (MJO) was diagnosed using 1979–2001 40-yr ECMWF Re-Analysis (ERA-40) data. A marked zonal asymmetry of the moisture relative to the MJO convection appears in the planetary boundary layer (PBL, below 700 hPa), creating a potentially more unstable stratification to the east of the MJO convection and favoring the eastward propagation of MJO. The PBL-integrated moisture budget diagnosis indicates that the vertical advection of moisture dominates the low-level moistening ahead of the convection. A further diagnosis indicates that the leading term in the vertical moisture advection is the advection of the background moisture by the MJO ascending flow associated with PBL convergence. The cause of the zonally asymmetric PBL convergence is further examined. It is found that heating-induced free-atmospheric wave dynamics account for 75%–90% of the total PBL convergence, while the warm SST anomaly induced by air–sea interaction contributes 10%–25% of the total PBL convergence. The horizontal moisture advection also plays a role in contributing to the PBL moistening ahead of the MJO convection. The leading term in the moisture advection is the advection across the background moisture gradient by the MJO flow. In the western Indian Ocean, Maritime Continent, and western Pacific, the meridional moisture advection by the MJO northerly flow dominates, while in the eastern Indian Ocean the zonal moisture advection is greater. The contribution of the moisture advection by synoptic eddies is in general small; it has a negative effect over the tropical Indian Ocean and western Pacific and becomes positive in the Maritime Continent region.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-04-10
    Beschreibung: In recent decades, tropical cyclone (TC) activity in the North Atlantic has shown a marked positive anomaly in genesis number, mean lifespan, number of intense hurricanes, and mean maximum intensity. The accumulated cyclone energy (ACE), which is defined as the sum of the square of the maximum surface wind velocity throughout the lifetime of a TC, is one of the measures that can be used to synthesize these factors. Similar to the ACE, the power dissipation index (PDI), which is defined as the integrated third power of maximum surface wind velocity, has also been used to describe TC activity. The basin-total ACE and PDI for the North Atlantic have also followed a large positive anomaly during the period 1995–2012; however, the relative importance of factors such as TC genesis number, TC track property (e.g., duration and lifespan), and TC intensity remains unclear in terms of their contribution to the positive anomalies in ACE and PDI. This study uses a new empirical statistical approach to analyze the TC data and finds that the increase in the TC genesis number is primarily responsible for the positive anomalies in ACE and PDI. Other factors, such as TC track property and TC intensity, appear to be minor influences.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2014-12-01
    Beschreibung: The role of zonal moisture asymmetry in the eastward propagation of the Madden–Julian oscillation (MJO) is investigated through a set of aquaplanet atmospheric general circulation model (AGCM) experiments with a zonally symmetric sea surface temperature distribution. In the control experiment, the model produces eastward-propagating MJO-like perturbations with a dominant period of 30–90 days. The model MJO exhibits a clear zonal asymmetry in the lower-tropospheric specific humidity field, with a positive (negative) anomaly appearing to the east (west) of the MJO convection. A diagnosis of the lower-tropospheric moisture budget indicates that the asymmetry primarily arises from vertical moisture advection associated with boundary layer convergence, while horizontal moisture advection has the opposite effect. In a sensitivity experiment, the lower-tropospheric specific humidity field is relaxed toward a zonal-mean basic state derived from the control simulation. In this case, the model’s mean state remains the same, but its intraseasonal mode becomes quasi-stationary. The numerical model experiments clearly demonstrate the importance of the zonal moisture asymmetry in MJO eastward propagation.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2011-02-01
    Beschreibung: The interactions between the boreal summer intraseasonal oscillation (ISO) and synoptic-scale variability (SSV) are investigated by diagnosing the atmospheric apparent heat source (Q1), apparent moisture sink (Q2), and eddy momentum transport. It is found that the synoptic Q1 and Q2 heating (cooling) anomalies are in phase with cyclonic (anticyclonic) vorticity disturbances, aligned in a southeast–northwest-oriented wave train pattern over the western North Pacific (WNP). The wave train is well organized and strengthened (loosely organized and weakened) during the ISO active (suppressed) phase. The nonlinearly rectified Q1 and Q2 fields due to the eddy–mean flow interaction account for 10%–30% of the total intraseasonal Q1 and Q2 variabilities over the WNP. During the ISO active (suppressed) phase, the nonlinearly rectified intraseasonal Q1 and Q2 heating (cooling) appear to the northwest of the ISO enhanced (suppressed) convection center, favoring the northwestward propagation of the ISO. A diagnosis of the zonal momentum budget shows that the eddy momentum flux convergence forces an intraseasonal westerly (easterly) tendency to the north of the ISO westerly (easterly) center during the ISO active (suppressed) phase. As a result, the eddy momentum transport may contribute to the northward propagation of the boreal summer ISO over the WNP.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-09-29
    Beschreibung: Rainfall in Hawaii during La Niña years has undergone abnormal variability since the early 1980s. Traditionally, Hawaii receives greater-than-normal precipitation during the La Niña wet seasons. Recently, La Niña years have experienced less-than-normal rainfall. A drying trend in Hawaiian precipitation during La Niña years is evident. A changepoint analysis determined that the shift in precipitation occurred in 1983, forming the two epochs used for comparison in this study. The first epoch (E1) runs from 1956 to 1982 and the second epoch (E2) from 1983 to 2010. Location-specific changes in rainfall anomalies from E1 to E2 throughout the Hawaiian Islands are examined, illustrating that the greatest difference in rainfall between epochs is found on the climatologically drier sides (i.e., south and west) of the islands. Variations in tropical sea surface temperatures and circulation features in the northern Pacific Ocean have changed during La Niña wet seasons, thus changing La Niña–year rainfall. The strengthening, broadening, and westward shifting of the eastern North Pacific subtropical high, coupled with an eastward elongation and intensification of the subtropical jet stream, are two main influences when considering the lack of precipitation during the recent La Niña wet seasons. Moisture transport analysis shows that variations in circulation structures play a dominant role in the reduction of moisture flux convergence in the Hawaiian region during the second epoch. Additionally, a storm-track analysis reveals that the changes found in the aforementioned circulation features are creating a less favorable environment for the development of Kona lows and midlatitude fronts in the vicinity of Hawaii.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2015-03-13
    Beschreibung: A multination joint field campaign called the Dynamics of MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in Year 2011 (DYNAMO/CINDY2011) took place in the equatorial Indian Ocean (IO) in late 2011. During the campaign period, two strong MJO events occurred from the middle of October to the middle of December (referred to as MJO I and MJO II, respectively). Both the events were initiated over the western equatorial Indian Ocean (WIO) around 50°–60°E. Using multiple observational data products (ERA-Interim, the ECMWF final analysis, and NASA MERRA), the authors unveil specific processes that triggered the MJO convection in the WIO. It is found that, 10 days prior to MJO I initiation, a marked large-scale ascending motion anomaly appeared in the lower troposphere over the WIO. The cause of this intraseasonal vertical motion anomaly was attributed to anomalous warm advection by a cyclonic gyre anomaly over the northern IO. The MJO II initiation was preceded by a low-level specific humidity anomaly. This lower-tropospheric moistening was attributed to the advection of mean moisture by anomalous easterlies over the equatorial IO. The contrast of anomalous precursor winds at the equator (westerly versus easterly) implies different triggering mechanisms for the MJO I and II events. It was found that upper-tropospheric circumnavigating signals did not contribute the initiation of both the MJO events. The EOF-based real-time multivariate MJO (RMM) indices should not be used to determine MJO initiation time and location because they are primarily used to capture large zonal scale and eastward-propagating signals, not localized features.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...