ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-20
    Description: Buoy observations from a 1999 Gulf of Mexico field program (GOM99) are used to investigate the relationships among friction velocity u*, wind speed U, and amount of swell present. A U–u*sea parameterization is developed for the case of pure wind sea (denoted by u*sea), which is linear in U over the range of available winds (2–16 m s−1). The curve shows no sign of an inflection point near 7–8 m s−1 as suggested in a 2012 paper by Andreas et al. on the basis of a transition from smooth to rough flow. When observations containing more than minimal swell energy are included, a different U–u* equation for U 〈 8 m s−1 is found, which would intersect the pure wind-sea curve about 7–8 m s−1. These two relationships yield a bilinear curve similar to Andreas et al. with an apparent inflection near 7–8 m s−1. The absence of the inflection in the GOM99 experiment pure wind-sea curve and the similarity of the GOM99 swell-dominated low wind speed to Andreas et al.’s low wind speed relationship suggest that the inflection may be due to the effect of swell and not a flow transition. Swell heights in the range of only 25–50 cm may be sufficient to impact stress at low wind speeds.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-01
    Description: Wind-sea generation was observed during two experiments off the coast of North Carolina. One event with offshore winds of 9–11 m s−1 directed 20° from shore normal was observed with eight directional stations recording simultaneously and spanning a fetch from 4 to 83 km. An opposing swell of 1-m height and 10-s period was also present. The wind-sea part of the wave spectrum conforms to established growth curves for significant wave height and peak period, except at inner-shelf stations where a large alongshore wind-sea component was observed. At these short fetches, the mean wave direction θm was observed to change abruptly across the wind-sea spectral peak, from alongshore at lower frequencies to downwind at higher frequencies. Waves from another event with offshore winds of 6–14 m s−1 directed 20°–30° from shore normal were observed with two instrument arrays. A significant amount of low-frequency wave energy was observed to propagate alongshore from the region where the wind was strongest. These measurements are used to assess the performance of some widely used parameterizations in wave models. The modeled transition of θm across the wind-sea spectrum is smoother than that in the observations and is reproduced very differently by different parameterizations, giving insights into the appropriate level of dissipation. Calculations with the full Boltzmann integral of quartet wave–wave interactions reveal that the discrete interaction approximation parameterization for these interactions is reasonably accurate at the peak of the wind sea but overpredicts the directional spread at high frequencies. This error is well compensated by parameterizations of the wind input source term that have a narrow directional distribution. Observations also highlight deficiencies in some parameterizations of wave dissipation processes in mixed swell–wind-sea conditions.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-01
    Description: The Lagrangian Submesoscale Experiment (LASER) involved the deployment of ~1000 biodegradable GPS-tracked Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) drifters to measure submesoscale upper-ocean currents and their potential impact on oil spills. The experiment was conducted from January to February 2016 in the Gulf of Mexico (GoM) near the mouth of the Mississippi River, an area characterized by strong submesoscale currents. A Helmholtz-Zentrum Geesthacht (HZG) marine X-band radar (MR) on board the R/V F. G. Walton Smith was used to locate fronts and eddies by their sea surface roughness signatures. The MR data were further processed to yield near-surface current maps at ~500-m resolution up to a maximum range of ~3 km. This study employs the drifter measurements to perform the first comprehensive validation of MR near-surface current maps. For a total of 4130 MR–drifter pairs, the root-mean-square error for the current speed is 4 cm and that for the current direction is 12°. The MR samples currents at a greater effective depth than the CARTHE drifters (1–5 m vs ~0.4 m). The mean MR–drifter differences are consistent with a wave- and wind-driven vertical current profile that weakens with increasing depth and rotates clockwise from the wind direction (by 0.7% of the wind speed and 15°). The technique presented here has great potential in observational oceanography, as it allows research vessels to map the horizontal flow structure, complementing the vertical profiles measured by ADCP.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-01
    Description: Surface wave measurements from ships pose difficulties because of motion contamination. Cifuentes-Lorenzen et al. analyzed laser altimeter and marine X-band radar (MR) wave measurements from the Southern Ocean Gas Exchange Experiment (SOGasEx). They found that wave measurements from both sensors deteriorate precipitously at ship speeds 3 m s−1. This study demonstrates that MR can yield accurate wave frequency–direction spectra independent of ship motion. It is based on the same shipborne SOGasEx wave data but uses the MR wave retrieval method proposed by Lund et al. and a novel empirical transfer function (ETF). The ETF eliminates biases in the MR wave spectra by redistributing energy from low to high frequencies. The resulting MR wave frequency–direction spectra are shown to agree well with laser altimeter wave frequency spectra from times when the ship was near stationary and with WAVEWATCH III (WW3) model wave parameters over the full study period.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-01
    Description: Estimation of near-surface current is essential to the estimation of upper-ocean material transport. Wind forcing and wave motions are dominant in the near-surface layer [within O(0.01) m of the surface], where the highly sheared flows can differ greatly from those at depth. This study presents a new method for remotely measuring the directional wind and wave drift current profile near to the surface (between 0.01 and 0.001 m for the laboratory and between 0.1 and 0.001 m for the field). This work follows the spectral analysis of high spatial (0.002 m) and temporal resolution (60 Hz) wave slope images, allowing for the evaluation of near-surface current characteristics without having to rely on instruments that may disturb the flow. Observations gathered in the 15 m × 1 m × 1 m wind-wave flume at the University of Miami’s Surge-Structure-Atmosphere Interaction (SUSTAIN) facility show that currents retrieved via this method agree well with the drift velocity of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and may be steered by the wind stress. These observations demonstrate that wind speed–based parameterizations alone may not be sufficient to estimate wind drift and to hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-09-01
    Description: Surface wind stress is a crucial driver of upper-ocean processes, impacting air–sea gas flux, wind-wave development, and material transport. Conventional eddy covariance (EC) processing requires imposing a fixed averaging window on the wind velocity time series in order to estimate the downward flux of momentum. While this method has become the standard means of directly measuring the wind stress, the use of a fixed averaging interval inherently constrains one’s ability to resolve transient signals that may have net effects on the air–sea interactions. Here we utilize the wavelet transform to develop a new technique for directly quantifying the wind stress magnitude from the wavelet coscalogram products. The time averages of these products evaluated at the scale of maximum amplitude are highly correlated with the EC estimates (R2 = 0.99; 5-min time windows), suggesting that stress is particularly sensitive to the dominant turbulent eddies. By taking advantage of the new method’s high temporal resolution, transient wind forcing and its dominant scales may be explicitly computed and analyzed. This technique will allow for more general investigations into air–sea dynamics under nonstationary or spatially inhomogeneous conditions, such as within the nearshore region.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-01
    Description: Ocean wave spectra are complex. Because of this complexity, no widely accepted method has been developed for the comparison between two sets of paired wave spectra. A method for intercomparing wave spectra is developed based on an example paradigm of the comparison of model spectra to observed spectra. Canonical correlation analysis (CCA) is used to investigate the correlation structure of the matrix of spectral correlations. The set of N ranked canonical correlations developed through CCA (here termed the r-sequence) is shown to be an effective method for understanding the degree of correlation between sets of paired spectral observation. A standard method for intercomparing sets of wave spectra based on CCA is then described. The method is elucidated through analyses of synthetic and real spectra that span a range of correlation from random to almost equal.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-01
    Description: The ocean wave signatures within conventional noncoherent marine X-band radar (MR) image sequences can be used to derive near-surface current information. On ships, an accurate near-real-time record of the near-surface current could improve navigational safety. It could also advance understanding of air–sea interaction processes. The standard shipboard MR near-surface current estimates were found to have large errors (of the same order of magnitude as the signal) that are associated with ship speed and heading. For acoustic Doppler current profilers (ADCPs), ship heading errors are known to induce a spurious cross-track current that is proportional to the ship speed and the sine of the error angle. Conventional mechanical gyrocompasses are very reliable heading sensors, but they are too inaccurate for shipboard ADCPs. Within the ADCP community, it is common practice to correct the gyrocompass measurements with the help of multiantenna carrier-phase differential GPS systems. This study shows how a similar multiantenna GPS-based ship heading correction technique stands to improve the accuracy of MR near-surface current estimates. Changes to the standard MR near-surface current retrieval method that are necessary for high-quality results from ships are also introduced. MR and ADCP data collected from R/V Roger Revelle during the Impact of Typhoons on the Ocean in the Pacific (ITOP) program in 2010 are used to demonstrate the MR currents’ accuracy and reliability.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-01
    Description: Spectral wave parameters from 11 platforms, measured during the recent Impact of Typhoons on the Ocean in the Pacific (ITOP) experiment, are intercompared. Two moorings, separated by ~180 km, were deployed in a section of “typhoon alley” off the coast of Taiwan for 4 months. Each mooring consisted of an Air–Sea Interaction Spar (ASIS) buoy that was tethered to a moored Extreme Air–Sea Interaction (EASI) buoy. EASI, the design of which is based on the hull of a 6-m Navy Oceanographic Meteorological Automatic Device (NOMAD) buoy, is validated as a 1D wave sensor against the established ASIS. Also, during this time three drifting miniature wave buoys, a wave-measuring marine radar on the Research Vessel Roger Revelle, and several overpasses of Jason-1 (C and Ku bands) and Jason-2 (Ku band) satellite altimeters were within 100 km of either the northern or southern mooring site. These additional measurements were compared against both EASI buoys. Findings are in-line with previous wave parameter intercomparisons. A corroborated measurement of mean wave direction and direction at the peak of the spectrum from the EASI buoy is presented. Consequently, this study is the first published account of directional wave information that has been successfully gathered from a buoy with a 6-m NOMAD-type hull. This result may be applied to improve operational coverage of wave direction. A high level of confidence is established in the ITOP wave data. Advantages and disadvantages of the different sensor types are discussed, which may be useful for the design of future field experiments.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-09-01
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...