ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (4)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2015-05-12
    Beschreibung: In their paper “The tropospheric land–sea warming contrast as the driver of tropical sea level pressure changes,” Bayr and Dommenget proposed a simple model of temperature-driven air redistribution to quantify the ratio between changes of sea level pressure ps and mean tropospheric temperature Ta in the tropics. This model assumes that the height of the tropical troposphere is isobaric. Here problems with this model are identified. A revised relationship between ps and Ta is derived governed by two parameters—the isobaric and isothermal heights—rather than just one. Further insight is provided by the earlier model of Lindzen and Nigam, which was the first to use the concept of isobaric height to relate tropical ps to air temperature, and they did this by assuming that isobaric height is always around 3 km and isothermal height is likewise near constant. Observational data, presented here, show that neither of these heights is spatially universal nor does their mean values match previous assumptions. Analyses show that the ratio of the long-term changes in ps and Ta associated with land–sea temperature contrasts in a warming climate—the focus of Bayr and Dommenget’s work—is in fact determined by the corresponding ratio of spatial differences in the annual mean ps and Ta. The latter ratio, reflecting lower pressure at higher temperature, is significantly impacted by the meridional pressure and temperature differences. Considerations of isobaric heights are shown to be unable to predict either spatial or temporal variation in ps. As noted by Bayr and Dommenget, the role of moisture dynamics in generating sea level pressure variation remains in need of further theoretical investigations.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2013-09-01
    Beschreibung: Precipitation generates small-scale turbulent air flows—the energy of which ultimately dissipates to heat. The power of this process has previously been estimated to be around 2–4 W m−2 in the tropics: a value comparable in magnitude to the dynamic power of global atmospheric circulation. Here it is suggested that the true value is approximately half the value of this previous estimate. The result reflects a revised evaluation of the mean precipitation pathlength HP. The dependence of HP on surface temperature, relative humidity, temperature lapse rate, and degree of condensation in the ascending air were investigated. These analyses indicate that the degree of condensation, defined as the relative change of the saturated water vapor mixing ratio in the region of condensation, is a major factor determining HP. From this theory the authors develop an estimate indicating that the mean large-scale rate of frictional dissipation associated with total precipitation in the tropics lies between 1 and 2 W m−2 and show empirical evidence in support of this estimate. Under terrestrial conditions frictional dissipation is found to constitute a minor fraction of the dynamic power of condensation-induced atmospheric circulation, which is estimated to be at least 2.5 times larger. However, because HP increases with increasing surface temperature Ts, the rate of frictional dissipation would exceed the power of condensation-induced dynamics, and thus block major circulation, at Ts ≳ 320 K in a moist adiabatic atmosphere.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-02-01
    Beschreibung: The influence of forest loss on rainfall remains poorly understood. Addressing this challenge, Spracklen et al. recently presented a pantropical study of rainfall and land cover that showed that satellite-derived rainfall measures were positively correlated with the degree to which model-derived air trajectories had been exposed to forest cover. This result confirms the influence of vegetation on regional rainfall patterns suggested in previous studies. However, the conclusion of Spracklen et al.—that differences in rainfall reflect air moisture content resulting from evapotranspiration while the circulation pattern remains unchanged—appears undermined by methodological inconsistencies. Here methodological problems are identified with the underlying analyses and the quantitative estimates for rainfall change predicted if forest cover is lost in the Amazon. Alternative explanations are presented that include the distinct role of forest evapotranspiration in creating low-pressure systems that draw moisture from the oceans to the continental hinterland. A wholly new analysis of meteorological data from three regions in Brazil, including the central Amazon forest, reveals a tendency for rainy days during the wet season with column water vapor (CWV) exceeding 50 mm to have higher pressure than rainless days, while at lower CWV, rainy days tend to have lower pressure than rainless days. The coupling between atmospheric moisture content and circulation dynamics underlines that the danger posed by forest loss is greater than suggested by consideration of moisture recycling alone.
    Print ISSN: 1525-755X
    Digitale ISSN: 1525-7541
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-01
    Beschreibung: Here we respond to Jaramillo et al.’s recent critique of condensation-induced atmospheric dynamics (CIAD). We show that CIAD is consistent with Newton’s laws while Jaramillo et al.’s analysis is invalid. To address implied objections, we explain our different formulations of “evaporative force.” The essential concept of CIAD is condensation’s role in powering atmospheric circulation. We briefly highlight why this concept is necessary and useful.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...