ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-11-30
    Description: Large-eddy simulations (LESs) with various constant wind, wave, and surface destabilizing surface buoyancy flux forcing are conducted, with a focus on assessing the impact of Langmuir turbulence on the entrainment buoyancy flux at the base of the ocean surface boundary layer. An estimate of the entrainment buoyancy flux scaling is made to best fit the LES results. The presence of Stokes drift forcing and the resulting Langmuir turbulence enhances the entrainment rate significantly under weak surface destabilizing buoyancy flux conditions, that is, weakly convective turbulence. In contrast, Langmuir turbulence effects are moderate when convective turbulence is dominant and appear to be additive rather than multiplicative to the convection-induced mixing. The parameterized unresolved velocity scale in the K-profile parameterization (KPP) is modified to adhere to the new scaling law of the entrainment buoyancy flux and account for the effects of Langmuir turbulence. This modification is targeted on common situations in a climate model where either Langmuir turbulence or convection is important and may overestimate the entrainment when both are weak. Nevertheless, the modified KPP is tested in a global climate model and generally outperforms those tested in previous studies. Improvements in the simulated mixed layer depth are found, especially in the Southern Ocean in austral summer.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-01
    Description: Motivated by recent observations of submesoscales in the Southern Ocean, we use nonlinear numerical simulations and a linear stability analysis to examine the influence of a barotropic jet on submesoscale instabilities at an isolated front. Simulations of the nonhydrostatic Boussinesq equations with a strong barotropic jet (approximately matching the observed conditions) show that submesoscale disturbances and strong vertical velocities are confined to a small region near the initial frontal location. In contrast, without a barotropic jet, submesoscale eddies propagate to the edges of the computational domain and smear the mean frontal structure. Several intermediate jet strengths are also considered. A linear stability analysis reveals that the barotropic jet has a modest influence on the growth rate of linear disturbances to the initial conditions, with at most a ~20% reduction in the growth rate of the most unstable mode. On the other hand, a basic state formed by averaging the flow at the end of the simulation with a strong barotropic jet is linearly stable, suggesting that nonlinear processes modify the mean flow and stabilize the front.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-26
    Description: The spatial scale of submesoscales is an important parameter for studies of submesoscale dynamics and multiscale interactions. The horizontal spatial scales of baroclinic, geostrophic-branch mixed layer instabilities (MLI) are investigated globally (without the equatorial or Arctic oceans) based on observations and simulations in the surface and bottom mixed layers away from significant topography. Three high-vertical-resolution boundary layer schemes driven with profiles from a MITgcm global submesoscale-permitting model improve robustness. The fastest-growing MLI wavelength decreases toward the poles. The zonal median surface MLI wavelength is 51–2.9 km when estimated from the observations and from 32, 25, and 27 km to 2.5, 1.2, and 1.1 km under the K-profile parameterization (KPP), Mellor–Yamada (MY), and κ–ε schemes, respectively. The surface MLI wavelength has a strong seasonality with a median value 1.6 times smaller in summer (10 km) than winter (16 km) globally from the observations. The median bottom MLI wavelengths estimated from simulations are 2.1, 1.4, and 0.41 km globally under the KPP, MY, and κ–ε schemes, respectively, with little seasonality. The estimated required ocean model grid spacings to resolve wintertime surface mixed layer eddies are 1.9 km (50% of regions resolved) and 0.92 km (90%) globally. To resolve summertime eddies or MLI seasonality requires grids finer than 1.3 km (50%) and 0.55 km (90%). To resolve bottom mixed layer eddies, grids finer than 257, 178, and 51 m (50%) and 107, 87, and 17 m (90%) are estimated under the KPP, MY, and κ–ε schemes.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-20
    Description: There are limitations in approximating Eulerian statistics from surface drifters, due to biases from surface convergences. By contrasting second- and third-order Eulerian and surface drifter structure functions obtained from a model of the Gulf of Mexico, the consequences of the semi-Lagrangian nature of observations during the summer Grand Lagrangian Deployment (GLAD) and winter Lagrangian Submesoscale Experiment (LASER) are estimated. By varying launch pattern and location, the robustness and sensitivity of these statistics are evaluated. Over scales less than 10 km, second-order structure functions of surface drifters consistently have shallower slopes (~r2/3) than Eulerian statistics (~r), suggesting that surface drifter structure functions differ systematically and do not reproduce the scalings of the Eulerian fields. Medians of Eulerian and cluster release second-order statistics are also significantly different across all scales. Synthetic cluster release statistics depend on launch location and weakly on launch pattern. The observations suggest little seasonal difference in the second-order statistics, but the LASER third-order structure function shows a sign change around 1 km, while GLAD and the synthetic cluster releases show a third-order structure function sign change around 10 km. Further, synthetic surface drifter cluster releases (and therefore likely the GLAD observations) show robust biases in the negative third-order structure functions, which may lead to significant overestimation of the spectral energy flux and underestimation of the transition scale to a forward energy cascade. The Helmholtz decomposition, and curl and divergence statistics, of Eulerian and cluster releases differ, particularly on scales less than 10 km, in agreement with observations of drifters preferentially sampling convergences in coherent structures.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-14
    Description: The El Niño–Southern Oscillation (ENSO) response to anthropogenic climate change is assessed in the following 1° nominal resolution Community Climate System Model, version 4 (CCSM4) Coupled Model Intercomparison Project phase 5 (CMIP5) simulations: twentieth-century ensemble, preindustrial control, twenty-first-century projections, and stabilized 2100–2300 “extension runs.” ENSO variability weakens slightly with CO2; however, various significance tests reveal that changes are insignificant at all but the highest CO2 levels. Comparison with the 1850 control simulation suggests that ENSO changes may become significant on centennial time scales; the lack of signal in the twentieth- versus twenty-first-century ensembles is due to their limited duration. Changes to the mean state are consistent with previous studies: a weakening of the subtropical wind stress curl, an eastward shift of the tropical convective cells, a reduction in the zonal SST gradient, and an increase in vertical thermal stratification take place as CO2 increases. The extratropical thermocline deepens throughout the twenty-first century, with the tropical thermocline changing slowly in response. The adjustment time scale is set by the relevant ocean dynamics, and the delay in its effect on ENSO variability is not diminished by increasing ensemble size. The CCSM4 results imply that twenty-first-century simulations may simply be too short for identification of significant tropical variability response to climate change. An examination of atmospheric teleconnections, in contrast, shows that the remote influences of ENSO do respond rapidly to climate change in some regions, particularly during boreal winter. This suggests that changes to ENSO impacts may take place well before changes to oceanic tropical variability itself become significant.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-10-15
    Description: A new method to quantify changes in El Niño–Southern Oscillation (ENSO) variability is presented, using the overlap between probability distributions of the wavelet spectrum as measured by the wavelet probability index (WPI). Examples are provided using long integrations of three coupled climate models. When subsets of Niño-3.4 time series are compared, the width of the confidence interval on WPI has an exponential dependence on the length of the subset used, with a statistically identical slope for all three models. This exponential relationship describes the rate at which the system converges toward equilibrium and may be used to determine the necessary simulation length for robust statistics. For the three models tested, a minimum of 250 model years is required to obtain 90% convergence for Niño-3.4, longer than typical Intergovernmental Panel on Climate Change (IPCC) simulations. Applying the same decay relationship to observational data indicates that measuring ENSO variability with 90% confidence requires approximately 240 years of observations, which is substantially longer than the modern SST record. Applying hypothesis testing techniques to the WPI distributions from model subsets and from comparisons of model subsets to the historical Niño-3.4 index then allows statistically robust comparisons of relative model agreement with appropriate confidence levels given the length of the data record and model simulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-14
    Description: Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-14
    Description: The influence of atmospheric CO2 concentration on the El Niño–Southern Oscillation (ENSO) is explored using 800-yr integrations of the NCAR Community Climate System Model, version 3.5 (CCSM3.5), with CO2 stabilized at the a.d. 1850, 1990, and 2050 levels. Model mean state changes with increased CO2 include preferential SST warming in the eastern equatorial Pacific, a weakening of the equatorial trade winds, increased vertical ocean stratification, and a reduction in the atmospheric Hadley and oceanic subtropical overturning circulations. The annual cycle of SST strengthens with CO2, likely related to unstable air–sea interactions triggered by an increased Northern Hemisphere land–sea temperature contrast. The mean trade wind structure changes asymmetrically about the equator, with increased convergence in the Northern Hemisphere and divergence in the Southern Hemisphere leading to corresponding deepening and shoaling of the thermocline. The proportion of eastern versus central Pacific–type El Niño events increases with CO2, but the significance of the changes is relatively low; ENSO amplitude also increases with CO2, although the change is insignificant at periods longer than 4 yr. The 2–4-yr ENSO response shows an enhancement in equatorial Kelvin wave variability, suggesting that stochastic triggering of El Niño events may be favored with higher CO2. However, the seasonal cycle–ENSO interaction is also modified by the asymmetric climatological changes, and forcing by the Southern Hemisphere becomes more important with higher CO2. Finally, higher-resolution CCSM4 control simulations show that ENSO weakens with CO2 given a sufficiently long integration time. The cause for the difference in ENSO climate sensitivity is not immediately obvious but may potentially be related to changes in westerly wind bursts or other sources of high-frequency wind stress variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-01
    Description: Here, the effects of surface waves on submesoscale instabilities are studied through analytical and linear analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less) cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes drift also weakly impacts SI through the Stokes shear force. When the Stokes and Eulerian shears are the same (opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for Stokes-induced restratification.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-02-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...