ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-02-22
    Description: Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi–National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiempirical approach, which relates these parameters via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP, and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud type–dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which contribute to high errors) are reduced. Special accommodations are made for handling optically thin cirrus and deep convection. An application to SNPP VIIRS is demonstrated, and the results are compared against global CloudSat observations. From the VIIRS–CloudSat daytime matchups (September–October 2013 and January–May 2015), the new algorithm outperforms the operational SNPP VIIRS algorithm, particularly when the retrieved CTH is accurate. Best performance is expected for single-layer liquid-phase clouds.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-01
    Description: The Global Energy and Water Cycle Exchanges project (GEWEX) water vapor assessment’s (G-VAP) main objective is to analyze and explain strengths and weaknesses of satellite-based data records of water vapor through intercomparisons and comparisons with ground-based data. G-VAP results from the intercomparison of six total column water vapor (TCWV) data records are presented. Prior to the intercomparison, the data records were regridded to a common regular grid of 2° × 2° longitude–latitude. All data records cover a common period from 1988 to 2008. The intercomparison is complemented by an analysis of trend estimates, which was applied as a tool to identify issues in the data records. It was observed that the trends over global ice-free oceans are generally different among the different data records. Most of these differences are statistically significant. Distinct spatial features are evident in maps of differences in trend estimates, which largely coincide with maxima in standard deviations from the ensemble mean. The penalized maximal F test has been applied to global ice-free ocean and selected land regional anomaly time series, revealing differences in trends to be largely caused by breakpoints in the different data records. The time, magnitude, and number of breakpoints typically differ from region to region and between data records. These breakpoints often coincide with changes in observing systems used for the different data records. The TCWV data records have also been compared with data from a radiosonde archive. For example, at Lindenberg, Germany, and at Yichang, China, such breakpoints are not observed, providing further evidence for the regional imprint of changes in the observing system.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-01
    Description: Polar lows generate hazardous weather conditions in the Arctic, and satellites have played a key role in understanding their genesis and dynamics. For the first time, an overpass of the CloudSat 94-GHz cloud radar over a polar low has been recorded. The case occurred in November 2013 in the Labrador Sea between Canada and Greenland, and had a striking convective appearance with an eyelike feature. A deep cloud band was observed by the radar, with radar reflectivity up to 5-km in altitude in a 50-km-wide band. It is likely that more such matchups exist in the CloudSat mission data.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-04-01
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellites allows roughly for the same region of Earth to be sampled twice in a nowcasting time frame. Using the MODIS cloud mask at 5-km resolution and radiosonde data, cloud nowcasting methods were evaluated from December 2008 through November 2009 over Utah and southwestern Wyoming (207 cases), a region with a variety of terrain. The hypothesis that a combination of persistence and displacement techniques (i.e., a hybrid technique) in regions of complex terrain should yield a better forecast than either method alone is tested; clouds forced by complex terrain often appear to persist along topographic barriers. A new forecast skill evaluation method is introduced, designed to equate correct cloudy and correct clear areas. The persistence nowcasting method demonstrated the highest skill [as much as 10% critical success index improvement (CSI) over other methods]. However, all nowcasting techniques performed similarly during the summer months (~65% CSI). It is concluded that cloud nowcasts at 5-km resolution over complex terrain in the forecast area, using no model wind or moisture data, do not improve upon a persistence nowcast. However, because these basic nowcasting methods are computationally fast, educated decisions on minute to hour time scales can be made nearly instantaneously.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-01
    Description: Clouds pose many operational hazards to the aviation community in terms of ceilings and visibility, turbulence, and aircraft icing. Realistic descriptions of the three-dimensional (3D) distribution and temporal evolution of clouds in numerical weather prediction models used for flight planning and routing are therefore of central importance. The introduction of satellite-based cloud radar (CloudSat) and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) sensors to the National Aeronautics and Space Administration A-Train is timely in light of these needs but requires a new paradigm of model-evaluation tools that are capable of exploiting the vertical-profile information. Early results from the National Center for Atmospheric Research Model Evaluation Toolkit (MET), augmented to work with the emergent satellite-based active sensor observations, are presented here. Existing horizontal-plane statistical evaluation techniques have been adapted to operate on observations in the vertical plane and have been extended to 3D object evaluations, leveraging blended datasets from the active and passive A-Train sensors. Case studies of organized synoptic-scale and mesoscale distributed cloud systems are presented to illustrate the multiscale utility of the MET tools. Definition of objects on the basis of radar-reflectivity thresholds was found to be strongly dependent on the model’s ability to resolve details of the cloud’s internal hydrometeor distribution. Contoured-frequency-by-altitude diagrams provide a useful mechanism for evaluating the simulated and observed 3D distributions for regional domains. The expanded MET provides a new dimension to model evaluation and positions the community to better exploit active-sensor satellite observing systems that are slated for launch in the near future.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-01
    Description: The NOAA operational total precipitable water (TPW) anomaly product is available to forecasters to display percentage of normal TPW in real time for applications like heavy precipitation forecasts. In this work, the TPW anomaly is compared to multilayer cloud frequency and vertical structure. The hypothesis is tested that the TPW anomaly is reflective of changes in cloud vertical distribution, and that anomalously moist atmospheres have more and deeper clouds, while dry atmospheres have fewer and thinner clouds. Cloud vertical occurrence profiles from the CloudSat 94-GHz radar and the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) are composited according to TPW anomaly for summer and winter from 2007 to 2010. Three geographic regions are examined: the North Pacific (NPAC), the tropical east Pacific (Niño), and the Mississippi Valley (MSVL), which is a land-only region. Cloud likelihood increases as TPW anomaly values increase beyond 100% over MSVL and Niño. Over NPAC, shallow boundary layer cloud occurrence is not a function of TPW anomaly, while high clouds and deep clouds throughout the troposphere are more likely at higher TPW anomalies. In the Niño region, boundary layer clouds grow vertically as the TPW anomaly increases, and the anomaly range is smaller than in the midlatitudes. In summer, the MSVL region resembles Niño, but boundary layer clouds are observed less frequently than expected. The wintertime MSVL results do not show any compelling relationship, perhaps because of the difficulties in computing TPW anomaly in a very dry atmosphere.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-01
    Description: The launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of vertically resolved cloud information. However, CloudSat’s nonscanning W-band (94 GHz) Cloud Profiling Radar (CPR) provides only a nadir cross section, or “curtain,” of the atmosphere along the satellite ground track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of the same type (e.g., cirrus, cumulus, and stratocumulus) often share geometric and microphysical properties as well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals of cloud-top height, result in a 3D structure for the topmost cloud layer. The technique was developed on multiyear CloudSat data and applied to Moderate Resolution Imaging Spectroradiometer (MODIS) swath data from the NASA Aqua satellite. Data-exclusion experiments along the CloudSat ground track show improved predictive skill over both climatology and type-independent nearest-neighbor estimates. More important, the statistical methods, which employ a dynamic range-dependent weighting scheme, were also found to outperform type-dependent near-neighbor estimates. Application to the 3D cloud rendering of a tropical cyclone is demonstrated.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...