ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (7)
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2016-09-01
    Beschreibung: A thorough understanding of the peak flows under urbanization and climate change—with the associated uncertainties—is indispensable for mitigating the negative social, economic, and environmental impacts from flooding. In this paper, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River basin (SARB), Texas. Historical and future land-cover maps were assembled to represent the urbanization process. Future climate and its uncertainties were represented by a series of designed scenarios using the Change Factor (CF) method. The factors were calculated by comparing the model ensemble from phase 5 of the Coupled Model Intercomparison Project (CMIP5) with baseline historical climatology during two future periods (2020–49, period 1; 2070–99, period 2). It was found that with urban impervious areas increasing alone, annual peak flows may increase from 601 (period 1) to 885 m3 s−1 (period 2). With regard to climate change, annual peak flows driven by forcings from maximum, median, and minimum CFs under four representative concentration pathways (RCPs) were analyzed. While the median values of future annual peak flows—forced by the median CF values—are very similar to the baseline under all RCPs, in each case the uncertainty range (calculated as the difference between annual peak flows driven by the maximum and minimum CFs) is very large. When urbanization and climate change coevolve, these averaged annual peak flows from the four RCPs will increase from 447 (period 1) to 707 m3 s−1 (period 2), with the uncertainties associated with climate change more than 3 times greater than those from urbanization.
    Print ISSN: 1525-755X
    Digitale ISSN: 1525-7541
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2009-05-15
    Beschreibung: The decrease in mountain snowpack associated with global warming is difficult to estimate in the presence of the large year-to-year natural variability in observations of snow-water equivalent (SWE). A more robust approach for inferring the impacts of global warming is to estimate the temperature sensitivity (λ) of spring snowpack and multiply it by putative past and future temperature rises observed across the Northern Hemisphere. Estimates of λ can be obtained from (i) simple geometric considerations based on the notion that as the seasonal-mean temperature rises by the amount δT, the freezing level and the entire snowpack should rise by the increment δT/Γ, where Γ is the mean lapse rate; (ii) the regression of 1 April SWE measurements upon mean winter temperatures; (iii) a hydrological model forced by daily temperature and precipitation observations; and (iv) the use of inferred accumulated snowfall derived from daily temperature and precipitation data as a proxy for SWE. All four methods yield an estimated sensitivity of 20% of spring snowpack lost per degree Celsius temperature rise. The increase of precipitation accompanying a 1°C warming can be expected to decrease the sensitivity to 16%. Considering observations of temperature rise over the Northern Hemisphere, it is estimated that spring snow-water equivalent in the Cascades portion of the Puget Sound drainage basin should have declined by 8%–16% over the past 30 yr resulting from global warming, and it can be expected to decline by another 11%–21% by 2050. These losses would be statistically undetectable from a trend analysis of the region’s snowpack over the past 30 yr.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-05-08
    Beschreibung: The performance of 24 GCMs available in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) is evaluated over the eastern Tibetan Plateau (TP) by comparing the model outputs with ground observations for the period 1961–2005. The twenty-first century trends of precipitation and temperature based on the GCMs’ projections over the TP are also analyzed. The results suggest that for temperature most GCMs reasonably capture the climatological patterns and spatial variations of the observed climate. However, the majority of the models have cold biases, with a mean underestimation of 1.1°–2.5°C for the months December–May, and less than 1°C for June–October. For precipitation, the simulations of all models overestimate the observations in climatological annual means by 62.0%–183.0%, and only half of the 24 GCMs are able to reproduce the observed seasonal pattern, which demonstrates a critical need to improve precipitation-related processes in these models. All models produce a warming trend in the twenty-first century under the Representative Concentration Pathway 8.5 (rcp8.5) scenario; in contrast, the rcp2.6 scenario predicts a lower average warming rate for the near term, and a small cooling trend in the long-term period with the decreasing radiative forcing. In the near term, the projected precipitation change is about 3.2% higher than the 1961–2005 annual mean, whereas in the long term the precipitation is projected to increase 6.0% under rcp2.6 and 12.0% under the rcp8.5 scenario. Relative to the 1961–2005 mean, the annual temperature is projected to increase by 1.2°–1.3°C in the short term; the warmings under the rcp2.6 and rcp8.5 scenarios are 1.8° and 4.1°C, respectively, for the long term.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-02-24
    Beschreibung: Changes in moisture as represented by P − E (precipitation − evapotranspiration) and the possible causes over the Tibetan Plateau (TP) during 1979–2011 are examined based on the Global Land Data Assimilation Systems (GLDAS) ensemble mean runoff and reanalyses. It is found that the TP is getting wetter as a whole but with large spatial variations. The climatologically humid southeastern TP is getting drier while the vast arid and semiarid northwestern TP is getting wetter. The Clausius–Clapeyron relation cannot be used to explain the changes in P − E over the TP. Through decomposing the changes in P − E into three major components—dynamic, thermodynamic, and transient eddy components—it is noted that the dynamic component plays a key role in the changes of P − E over the TP. The thermodynamic component contributes positively over the southern and central TP whereas the transient eddy component tends to reinforce (offset) the dynamic component over the southern and parts of the northern TP (central TP). Seasonally, the dynamic component contributes substantially to changes in P − E during the wet season, with small contributions from the thermodynamic and transient eddy components. Further analyses reveal the poleward shift of the East Asian westerly jet stream by 0.7° and poleward moisture transport as well as the intensification of the summer monsoon circulation due to global warming, which are shown to be responsible for the general wetting trend over the TP. It is further demonstrated that changes in local circulations that occur due to the differential heating of the TP and its surroundings are responsible for the spatially varying changes in moisture over the TP.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-01-01
    Beschreibung: Gridded daily precipitation, temperature minima and maxima, and wind speed are generated for the northern Tibetan Plateau (NTP) for 1957–2009 using observations from 81 surface stations. Evaluation reveals reasonable quality and suitability of the gridded data for climate and hydrology analysis. The Mann–Kendall trends of various climate elements of the gridded data show that NTP has in general experienced annually increasing temperature and decreasing wind speed but spatially varied precipitation changes. The northwest (northeast) NTP became dryer (wetter), while there were insignificant changes in precipitation in the south. Snowfall has decreased along high mountain ranges during the wet and warm season. Averaged over the entire NTP, snowfall, temperature minima and maxima, and wind speed experienced statistically significant linear trends at rates of −0.52 mm yr−1 (water equivalent), +0.04°C yr−1, +0.03°C yr−1, and −0.01 m s−1 yr−1, respectively. Correlation between precipitation/wind speed and climate indices characterizing large-scale weather systems for four subregions in NTP reveals that changes in precipitation and wind speed in winter can be attributed to changes in the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), the East Asian westerly jet (WJ), and the El Niño–Southern Oscillation (ENSO) (wind speed only). In summer, the changes in precipitation and wind are only weakly related to these indices. It is speculated that in addition to the NAO, AO, ENSO, WJ, and the East and South Asian summer monsoons, local weather systems also play important roles.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2015-05-12
    Beschreibung: Net precipitation [precipitation minus evapotranspiration (P − E)] changes between 1979 and 2011 from a high-resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibetan Plateau (TP) and compared to the Global Land Data Assimilation System (GLDAS) product. The high-resolution simulation better resolves precipitation changes than its coarse-resolution forcing, which contributes dominantly to the improved P − E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P − E changes. The mechanism behind the P − E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P − E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P − E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis reveals the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P − E changes in the TP.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2011-10-01
    Beschreibung: Unknown future precipitation is the dominant source of uncertainty for many streamflow forecasts. Numerical weather prediction (NWP) models can be used to generate quantitative precipitation forecasts (QPF) to reduce this uncertainty. The usability and usefulness of NWP model outputs depend on the application time and space scales as well as forecast lead time. For streamflow nowcasting (very short lead times; e.g., 12 h), many applications are based on measured in situ or radar-based real-time precipitation and/or the extrapolation of recent precipitation patterns. QPF based on NWP model output may be more useful in extending forecast lead time, particularly in the range of a few days to a week, although low NWP model skill remains a major obstacle. Ensemble outputs from NWP models are used to articulate QPF uncertainty, improve forecast skill, and extend forecast lead times. Hydrologic prediction driven by these ensembles has been an active research field, although operational adoption has lagged behind. Conversely, relatively little study has been done on the hydrologic component (i.e., model, parameter, and initial condition) of uncertainty in the streamflow prediction system. Four domains of research are identified: selection and evaluation of NWP model–based QPF products, improved QPF products, appropriate hydrologic modeling, and integrated applications.
    Print ISSN: 1525-755X
    Digitale ISSN: 1525-7541
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...