ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-07-01
    Description: An ensemble of seasonal Atlantic hurricane simulations is conducted using The Florida State University/Center for Ocean–Atmospheric Prediction Studies (FSU–COAPS) global spectral model (Cocke and LaRow) at a resolution of T126L27 (a Gaussian grid spacing of 0.94°). Four integrations comprising the ensembles were generated using the European Centre for Medium-Range Weather Forecasts (ECMWF) time-lagged initial atmospheric conditions centered on 1 June for the 20 yr from 1986 to 2005. The sea surface temperatures (SSTs) were updated weekly using the Reynolds et al. observed data. An objective-tracking algorithm obtained from the ECMWF and modified for this model’s resolution was used to detect and track the storms. It was found that the model’s composite storm structure and track lengths are realistic. In addition, the 20-yr interannual variability was well simulated by the ensembles with a 0.78 ensemble mean rank correlation. The ensembles tend to overestimate (underestimate) the numbers of storms during July (September) and produced only one CAT4–level storm on the Saffir–Simpson scale. Similar problems are noted in other global model simulations. All ensembles did well in simulating the large number of storms forming in the Atlantic basin during 1995 and showed an increase in the number of storms during La Niña and a decrease during El Niño events. The results are found to be sensitive to the choices of convection schemes and diffusion coefficients. The overall conclusion is that models such as the one used here are needed to better hindcast the interannual variability; however, going to an even higher resolution does not guarantee better interannual variability, tracks, or intensity. Improved physical parameterizations, such as using an explicit convection scheme and better representation of surface roughness at high wind speeds, are likely to more accurately represent hurricane intensity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-14
    Description: This study attempts to explain the considerable spatial heterogeneity in the observed linear trends of monthly mean maximum and minimum temperatures (Tmax and Tmin) from station observations in the southeastern (SE) United States (specifically Florida, Alabama, Georgia, South Carolina, and North Carolina). In a majority of these station sites, the warming trends in Tmin are stronger in urban areas relative to rural areas. The linear trends of Tmin in urban areas of the SE United States are approximately 7°F century−1 compared to about 5.5°F century−1 in rural areas. The trends in Tmax show weaker warming (or stronger cooling) trends with irrigation, while trends in Tmin show stronger warming trends. This functionality of the temperature trends with land features also shows seasonality, with the boreal summer season showing the most consistent relationship in the trends of both Tmax and Tmin. This study reveals that linear trends in Tmax in the boreal summer season show a cooling trend of about 0.5°F century−1 with irrigation, while the same observing stations on an average display warming trends in Tmin of about 3.5°F century−1. The seasonality and the physical consistency of these relationships with existing theories may suggest that urbanization and irrigation have a nonnegligible influence on the spatial heterogeneity of the surface temperature trends over the SE United States. The study also delineates the caveats and limitations of the conclusions reached herein due to the potential influence of perceived nonclimatic discontinuities (which incidentally could also have a seasonal cycle) that have not been taken into account.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-05-01
    Description: The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ⅙° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more].
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...