ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-01
    Description: In most observations of diffusive convection in the ocean and in lakes, the characteristic diffusive staircases evolve over long time scales under quasi-stationary background conditions. In the Baltic Sea, however, diffusive staircases develop inside the flanks of intermittent intrusions that induce strong inverse temperature gradients over a vertical range of a few meters, varying on time scales of hours to days. Here, results are discussed from an extensive field campaign conducted in summer 2016 in the southern Baltic Sea, including temperature microstructure data from ocean gliders and an autonomous profiling platform. We find conditions favorable for diffusive instability in the vicinity of warm and cold intrusions with density ratios as small as Rρ = 1.3. The staircases evolving under these conditions are characterized by a small number of steps (typically 1–4) with order 0.1–1-m thickness, temperature differences exceeding 1 K across individual diffusive interfaces, and exceptionally large diffusive heat fluxes of order 10 W m−2. The standard heat flux parameterization of Kelley agrees within a factor of 2 with the directly observed interfacial heat fluxes, except for large fluxes at low Rρ, which are strongly overestimated. The glider surveys reveal a surprisingly small lateral coherency of order 100 m of the staircase patterns, and a spreading of the diffusively unstable intrusions across isopycnals.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-01
    Description: The steady-state energy and thermal variance budgets form the basis for most current methods for evaluating turbulent fluxes of buoyancy, heat, and salinity. This study derives these budgets for a double-diffusive staircase and quantifies them using direct numerical simulations; 10 runs with different Rayleigh numbers are considered. The energy budget is found to be well approximated by a simple three-term balance, while the thermal variance budget consists of only two terms. The two budgets are also combined to give an expression for the ratio of the heat and salt fluxes. The heat flux scaling is also studied and found to agree well with earlier estimates based on laboratory experiments and numerical simulations at high Rayleigh numbers. At low Rayleigh numbers, however, the authors find large deviations from earlier scaling laws. Last, the scaling theory of Grossman and Lohse, which was developed for Rayleigh–Bénard convection and is based on the partitioning of the kinetic energy and tracer variance dissipation, is adapted to the diffusive regime of double-diffusive convection. The predicted heat flux scalings are compared to the results from the numerical simulations and earlier estimates.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-15
    Description: This study uses CTD and microstructure measurements of shear and temperature from 348 glider profiles to characterize turbulence and turbulent mixing in the southeastern Beaufort Sea, where turbulence observations are presently scarce. We find that turbulence is typically weak: the turbulent kinetic energy dissipation rate, ε, has a median value (with 95% confidence intervals) of 2.3 (2.2, 2.4) × 10−11 W kg−1 and is less than 1.0×10−10 W kg−1 in 68% of observations. Variability in ε spans five orders of magnitude, with indications that turbulence is bottom enhanced and modulated in time by the semidiurnal tide. Stratification is strong and frequently damps turbulence, inhibiting diapycnal mixing. Buoyancy Reynolds number estimates suggest that turbulent diapycnal mixing is unlikely in 93% of observations; however, a small number of strongly turbulent mixing events are disproportionately important in determining net buoyancy fluxes. The arithmetic mean diapycnal diffusivity of density is 4.5 (2.3, 14) ×10−6 m2 s−1, three orders of magnitude larger than that expected from molecular diffusion. Vertical heat fluxes are modest at O(0.1) W m−2, of the same order of magnitude as those in the Canada Basin double-diffusive staircase, however, staircases are generally not observed. Despite significant heat present in the Pacific Water layer in the form of a warm-core mesoscale eddy and smaller, O(1) km, temperature anomalies, turbulent mixing was found to be too low to release this heat to shallower depths.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: The turbulent dissipation rate ε is a key parameter to many oceanographic processes. Recently, gliders have been increasingly used as a carrier for microstructure sensors. Compared to conventional ship-based methods, glider-based microstructure observations allow for long-duration measurements under adverse weather conditions and at lower costs. The incident water velocity U is an input parameter for the calculation of the dissipation rate. Since U cannot be measured using the standard glider sensor setup, the parameter is normally computed from a steady-state glider flight model. As ε scales with U2 or U4, depending on whether it is computed from temperature or shear microstructure, respectively, flight model errors can introduce a significant bias. This study is the first to use measurements of in situ glider flight, obtained with a profiling Doppler velocity log and an electromagnetic current meter, to test and calibrate a flight model, extended to include inertial terms. Compared to a previously suggested flight model, the calibrated model removes a bias of approximately 1 cm s−1 in the incident water velocity, which translates to roughly a factor of 1.2 in estimates of the dissipation rate. The results further indicate that 90% of the estimates of the dissipation rate from the calibrated model are within a factor of 1.1 and 1.2 for measurements derived from microstructure temperature sensors and shear probes, respectively. We further outline the range of applicability of the flight model.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-01
    Description: Thin high-gradient interfaces that occur naturally within double-diffusive staircases are used to estimate the response characteristics of temperature and conductivity microstructure sensors. The knowledge of these responses is essential for resolving small-scale turbulence in natural water bodies and for determining double-diffusive fluxes of heat and salt. Here, the authors derive microstructure sensor responses from observed differences in the statistical distributions of interface thicknesses at various profiling speeds in Lake Kivu (central Africa). In contrast to the standard approach for determining sensor responses, this method is independent of any knowledge of the true in situ temperature and salinity structure. Assuming double-pole frequency response functions, the time constants for the Sea-Bird Electronics SBE-7 conductivity sensor and the Rockland Scientific International FP07 thermistor are estimated to be 2.2 and 10 ms, respectively. In contrast to previous assumptions, the frequency response for the SBE-7 is found to be substantial and dominates the wavenumber response for profiling speeds larger than 0.19 m s−1.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-21
    Description: The quantification of pressure fields in the airflow over water waves is fundamental for understanding the coupling of the atmosphere and the ocean. The relationship between the pressure field, and the water surface slope and velocity, are crucial in setting the fluxes of momentum and energy. However, quantifying these fluxes is hampered by difficulties in measuring pressure fields at the wavy air-water interface. Here we utilise results from laboratory experiments of wind-driven surface waves. The data consist of particle image velocimetry of the airflow combined with laser-induced fluorescence of the water surface. These data were then used to develop a pressure field reconstruction technique based on solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an independent bulk estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget is closed to within approximately 5%. In the partitioning of the momentum flux between viscous and pressure drag components, we find a greater influence of form drag at high wind speeds and wave slopes. An analysis of the various approximations and assumptions made in the pressure reconstruction, along with the corresponding sources of error, is also presented.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-31
    Description: Diffusive convection can occur when two constituents of a stratified fluid have opposing effects on its stratification and different molecular diffusivities. This form of convection arises for the particular temperature and salinity stratification in the Arctic Ocean and is relevant to heat fluxes. Previous studies have suggested that planetary rotation may influence diffusive-convective heat fluxes, although the precise physical mechanisms and regime of rotational influence are not well understood. A linear stability analysis of a temperature and salinity interface bounded by two mixed layers is performed here to understand the stability properties of a diffusive-convective system, and in particular the transition from non-rotating to rotationally-controlled heat transfer. Rotation is shown to stabilize diffusive convection by increasing the critical Rayleigh number to initiate instability. In the rotationally-controlled regime, a −4/3 power law is found between the critical Rayleigh number and the Ekman number, similar to the scaling for rotating thermal convection. The transition from non-rotating to rotationally-controlled convection, and associated drop in heat fluxes, is predicted to occur when the thermal interfacial thickness exceeds about 4 times the Ekman layer thickness. A vorticity budget analysis indicates how baroclinic vorticity production is counteracted by the tilting of planetary vorticity by vertical shear, which accounts for the stabilization effect of rotation. Finally, direct numerical simulations yield generally good agreement with the linear stability analysis. This study, therefore, provides a theoretical framework for classifying regimes of rotationally-controlled diffusive-convective heat fluxes, such as may arise in some regions of the Arctic Ocean.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...