ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-01
    Description: Upwelling off southern Senegal and Gambia takes place over a wide shelf with a large area where depths are shallower than 20 m. This results in typical upwelling patterns that are distinct (e.g., more persistent in time and aligned alongshore) from those of other better known systems, including Oregon and Peru where inner shelves are comparatively narrow. Synoptic to superinertial variability of this upwelling center is captured through a 4-week intensive field campaign, representing the most comprehensive measurements of this region to date. The influence of mesoscale activity extends across the shelf break and far over the shelf where it impacts the midshelf upwelling (e.g., strength of the upwelling front and circulation), possibly in concert with wind fluctuations. Internal tides and solitary waves of large amplitude are ubiquitous over the shelf. The observations suggest that these and possibly other sources of mixing play a major role in the overall system dynamics through their impact upon the general shelf thermohaline structure, in particular in the vicinity of the upwelling zone. Systematic alongshore variability in thermohaline properties highlights important limitations of the 2D idealization framework that is frequently used in coastal upwelling studies.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-01
    Description: This study focuses on the description of an oceanic variant of the Charney baroclinic instability, arising from the joint presence of (i) an equatorward buoyancy gradient that extends from the surface into the ocean interior and (ii) reduced subsurface stratification, for example, as produced by wintertime convection or subduction. This study analyzes forced dissipative simulations with and without Charney baroclinic instability (C-BCI). In the former, C-BCI strengthens near-surface frontal activity with important consequences in terms of turbulent statistics: increased variance of vertical vorticity and velocity and increased vertical turbulent fluxes. Energetic consequences are explored. Despite the atypical enhancement of submesoscale activity in the simulation subjected to C-BCI, and contrary to several recent studies, the downscale energy flux at the submesoscale en route to dissipation remains modest in the flow energetic equilibration. In particular, it is modest vis à vis the global energy input to the system, the eddy kinetic energy input through conversion of available potential energy, and the classical inverse cascade of kinetic energy. Linear stability analysis suggests that the southern flank of the Gulf Stream may be conducive to oceanic Charney baroclinic instability in spring, following mode water formation and upper-ocean destratification.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-01
    Description: High-resolution simulations of β-channel, zonal-jet, baroclinic turbulence with a three-dimensional quasigeostrophic (QG) model including surface potential vorticity (PV) are analyzed with emphasis on the competing role of interior and surface PV (associated with isopycnal outcropping). Two distinct regimes are considered: a Phillips case, where the PV gradient changes sign twice in the interior, and a Charney case, where the PV gradient changes sign in the interior and at the surface. The Phillips case is typical of the simplified turbulence test beds that have been widely used to investigate the effect of ocean eddies on ocean tracer distribution and fluxes. The Charney case shares many similarities with recent high-resolution primitive equation simulations. The main difference between the two regimes is indeed an energization of submesoscale turbulence near the surface. The energy cycle is analyzed in the (k, z) plane, where k is the horizontal wavenumber. In the two regimes, the large-scale buoyancy forcing is the primary source of mechanical energy. It sustains an energy cycle in which baroclinic instability converts more available potential energy (APE) to kinetic energy (KE) than the APE directly injected by the forcing. This is due to a conversion of KE to APE at the scale of arrest. All the KE is dissipated at the bottom at large scales, in the limit of infinite resolution and despite the submesoscales energizing in the Charney case. The eddy PV flux is largest at the scale of arrest in both cases. The eddy diffusivity is very smooth but highly nonuniform. The eddy-induced circulation acts to flatten the mean isopycnals in both cases.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-01-01
    Description: This is the second of three papers investigating the regime transition that occurs in numerical simulations for an idealized, equilibrium, subtropical, eastern boundary, upwelling current system similar to the California Current. The emergent upper-ocean submesoscale fronts are analyzed from phenomenological and dynamical perspectives, using a combination of composite averaging and separation of distinctive subregions of the flow. The initiating dynamical process for the transition is near-surface frontogenesis. The frontal behavior is similar to both observed meteorological surface fronts and solutions of the approximate dynamical model called surface dynamics (i.e., uniform interior potential vorticity q and diagnostic force balance) in the intensification of surface density gradients and secondary circulations in response to a mesoscale strain field. However, there are significant behavioral differences compared to the surface-dynamics model. Wind stress acts on fronts through nonlinear Ekman transport and creation and destruction of potential vorticity. The strain-induced frontogenesis is disrupted by vigorous submesoscale frontal instabilities that in turn lead to secondary frontogenesis events, submesoscale vortices, and excitation of even smaller-scale flows. Intermittent, submesoscale breakdown of geostrophic and gradient-wind force balance occurs during the intense frontogenesis and frontal-instability events.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2002-10-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-08-01
    Description: The authors examine the turbulent properties of a baroclinically unstable oceanic flow using primitive equation (PE) simulations with high resolution (in both horizontal and vertical directions). Resulting dynamics in the surface layers involve large Rossby numbers and significant vortical asymmetries. Furthermore, the ageostrophic divergent motions associated with small-scale surface frontogenesis are shown to significantly alter the nonlinear transfers of kinetic energy and consequently the time evolution of the surface dynamics. Such impact of the ageostrophic motions explains the emergence of the significant cyclone–anticyclone asymmetry and of a strong restratification in the upper layers, which are not allowed by the quasigeostrophic (QG) or surface quasigeostrophic (SQG) theory. However, despite this strong ageostrophic character, some of the main surface properties are surprisingly still close to the surface quasigeostrophic equilibrium. They include a noticeable shallow (≈k−2) velocity spectrum as well as a conspicuous local spectral relationship between surface kinetic energy, sea surface height, and density variance over a large range of scales (from 400 to 4 km). Furthermore, surface velocities can be remarkably diagnosed from only the surface density using SQG relations. This suggests that the validity of some specific SQG relations extends to dynamical regimes with large Rossby numbers. The interior dynamics, on the other hand, strongly differ from the surface dynamics, involving a small Rossby number, a steep (≈k−4) velocity spectrum, and a somewhat steeper density spectrum. The compensation of the surface restratification by a destratification at depth confirms a connection between the surface and the interior induced by the small-scale divergent motions.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-10-01
    Description: This is the last of a suite of three papers about the transition that occurs in numerical simulations for an idealized equilibrium, subtropical, eastern-boundary upwelling current system similar to the California Current. The transition is mainly explained by the emergence of ubiquitous submesoscale density fronts and ageostrophic circulations about them in the weakly stratified surface boundary layer. Here the high-resolution simulations are further analyzed from the perspective of the kinetic energy (KE) spectrum shape and spectral energy fluxes in the mesoscale-to-submesoscale range in the upper ocean. For wavenumbers greater than the mesoscale energy peak, there is a submesoscale power-law regime in the spectrum with an exponent close to −2. In the KE balance an important conversion from potential to kinetic energy takes place at all wavenumbers in both mesoscale and submesoscale ranges; this conversion is the energetic counterpart of the vertical restratification flux and frontogenesis discussed in the earlier papers. A significant forward cascade of KE occurs in the submesoscale range en route to dissipation at even smaller scales. This is contrary to the inverse energy cascade of geostrophic turbulence and it is, in fact, fundamentally associated with the horizontally divergent (i.e., ageostrophic) velocity component. The submesoscale dynamical processes of frontogenesis, frontal instability, and breakdown of diagnostic force balance are all essential elements of the energy cycle of potential energy conversion and forward KE cascade.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-06-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2008-01-01
    Description: In computational simulations of an idealized subtropical eastern boundary upwelling current system, similar to the California Current, a submesoscale transition occurs in the eddy variability as the horizontal grid scale is reduced to O(1) km. This first paper (in a series of three) describes the transition in terms of the emergent flow structure and the associated time-averaged eddy fluxes. In addition to the mesoscale eddies that arise from a primary instability of the alongshore, wind-driven currents, significant energy is transferred into submesoscale fronts and vortices in the upper ocean. The submesoscale arises through surface frontogenesis growing off upwelled cold filaments that are pulled offshore and strained in between the mesoscale eddy centers. In turn, some submesoscale fronts become unstable and develop submesoscale meanders and fragment into roll-up vortices. Associated with this phenomenon are a large vertical vorticity and Rossby number, a large vertical velocity, relatively flat horizontal spectra (contrary to the prevailing view of mesoscale dynamics), a large vertical buoyancy flux acting to restratify the upper ocean, a submesoscale energy conversion from potential to kinetic, a significant spatial and temporal intermittency in the upper ocean, and material exchanges between the surface boundary layer and pycnocline. Comparison with available observations indicates that submesoscale fronts and instabilities occur widely in the upper ocean, with characteristics similar to the simulations.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-06-01
    Description: A dynamical interpretation is made of the mesoscale eddy buoyancy fluxes in the Eastern Boundary Currents off California and Peru–Chile, based on regional equilibrium simulations. The eddy fluxes are primarily shoreward and upward across a swath several hundred kilometers wide in the upper ocean; as such they serve to balance mean offshore air–sea heating and coastal upwelling. In the stratified interior the eddy fluxes are consistent with the adiabatic hypothesis associated with a mean eddy-induced velocity advecting mean buoyancy and tracers. Furthermore, with a suitable gauge choice, the horizontal fluxes are almost entirely aligned with the mean horizontal buoyancy gradient, consistent with the advective parameterization scheme of Gent and McWilliams. The associated diffusivity κ is surface intensified, matching the vertical stratification profile. The fluxes span the across-shore band of high eddy energy, but their alongshore structure is unresolved because of sampling limitations. In the surface layer the eddy flux is significantly diabatic with a shallow eddy-induced circulation cell and downgradient lateral diapycnal flux. The dominant eddy generation process is baroclinic instability, but there are significant regional differences between the upwelling systems in the flux and κ that are not consistent with simple instability theory.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...