ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-12-11
    Description: A major feature of projected changes in Southern Hemisphere climate under future scenarios of increased greenhouse gas concentrations is the poleward shift and strengthening of the main eddy-driven belt of midlatitude, near-surface westerly winds (the westerly jet). However, there is large uncertainty in projected twenty-first-century westerly jet changes across different climate models. Here models from the World Climate Research Programme’s phase 5 of the Coupled Model Intercomparison Project (CMIP5) were evaluated to assess linkages between diversity in simulated sea ice area (SIA), Antarctic amplification, and diversity in projected twenty-first-century changes in the westerly jet following the representative concentration pathway 8.5 (RCP8.5) scenario. To help disentangle cause and effect in the coupled model analysis, uncoupled atmosphere-only fixed sea surface experiments from CMIP5 were also evaluated. It is shown that across all seasons, approximately half of the variance in projected RCP8.5 jet strengthening is explained statistically by intermodel differences in simulated historical SIA, whereby CMIP5 models with larger baseline SIA exhibit more ice retreat and less jet strengthening in the future. However, links to jet shift are much weaker and are only statistically significant in austral autumn and winter. It is suggested that a significant cross-model correlation between historical jet strength and projected strength change (r = −0.58) is, at least in part, a result of atmospherically driven historical SIA biases, which then feed back into the atmosphere in future projections. The results emphasize that SIA appears to act in concert with proximal changes in sea surface temperature gradients in relation to model diversity in westerly jet projections.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-08
    Description: Breaking planetary waves (BPWs) affect stratospheric dynamics by reshaping the waveguides, causing internal wave reflection, and preconditioning sudden stratospheric warmings. This study examines observed changes in BPWs during the northern winter resulting from enhanced solar forcing and the consequent effect on the seasonal development of the polar vortex. During the period 1979–2014, solar-induced changes in BPWs were first observed in the uppermost stratosphere. High solar forcing was marked by sharpening of the potential vorticity (PV) gradient at 30°–45°N, enhanced wave absorption at high latitudes, and a reduced PV gradient between these regions. These anomalies instigated an equatorward shift of the upper-stratospheric waveguide and enhanced downward wave reflection at high latitudes. The equatorward refraction of reflected waves from the polar upper stratosphere then led to enhanced wave absorption at 35°–45°N and 7–20 hPa, indicative of a widening of the midstratospheric surf zone. The stratospheric waveguide was thus constricted at about 45°–60°N and 5–10 hPa in early boreal winter; reduced upward wave propagation through this region resulted in a stronger upper-stratospheric westerly jet. From January, the regions with enhanced BPWs acted as “barriers” for subsequent upward and equatorward wave propagation. As the waves were trapped within the stratosphere, anomalies of zonal wavenumbers 2 and 3 were reflected poleward from the stratospheric surf zone. Resonant excitation of some of these reflected waves resulted in rapid growth of wave disturbances and a more disturbed polar vortex in late winter. These results provide a process-oriented explanation for the observed solar cycle signal. They also highlight the importance of nonlinearity in the processes that drive the stratospheric response to external forcing.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-15
    Description: A model simulation forced by prescribed ozone depletion shows strong dynamical modulation of the springtime cooling of the polar stratosphere associated with the Antarctic ozone hole. The authors find that in late spring the anomalous radiative cooling in response to ozone depletion is almost canceled above ~100 hPa by an increase in dynamical heating. Between ~300 and ~100 hPa, however, it is enhanced by a reduction in dynamical heating, resulting in the descent of the cold anomaly down to the tropopause. In early summer increased dynamical heating dominates as the radiative cooling diminishes so that the cold anomaly associated with the delayed breakup of the stratospheric vortex is reduced. The anomalous dynamical heating is driven by changes in the Brewer–Dobson circulation arising primarily from the dissipation of resolved-scale waves. The model changes are broadly consistent with trends from reanalysis and offline diagnoses of heating rates using a radiation scheme. These results help one to understand dynamically induced change in the evolution and timing of the stratospheric vortex in recent decades and will help to enable improved simulation of the Southern Hemisphere climate.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-13
    Description: The Eliassen–Palm (E-P) flux divergences derived from ERA-40 and ERA-Interim show significant differences during northern winter. The discrepancies are marked by vertically alternating positive and negative anomalies at high latitudes and are manifested via a difference in the climatology. The magnitude of the discrepancies can be greater than the interannual variability in certain regions. These wave forcing discrepancies are only partially linked to differences in the residual circulation but they are evidently related to the static stability in the affected regions. Thus, the main cause of the discrepancies is most likely an imbalance of radiative heating. Two significant sudden changes are detected in the differences between the eddy heat fluxes derived from the two reanalyses. One of the changes may be linked to the bias corrections applied to the infrared radiances from the NOAA-12 High-Resolution Infrared Radiation Sounder in ERA-40, which is known to be contaminated by volcanic aerosol from the 1991 eruption of Mt. Pinatubo. The other change may be due in part to the use of uncorrected radiances from the NOAA-15 Advanced Microwave Sounding Units by ERA-Interim since 1998. These sudden changes have the potential to alter the wave forcing trends in the affected reanalysis, suggesting that extreme care is needed when one comes to extract trends from the highly derived wave forcing quantities.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-01
    Description: In this study, surface and radiosonde data from staffed Antarctic observation stations are compared to output from five reanalyses [Climate Forecast System Reanalysis (CFSR), 40-yr ECMWF Re-Analysis (ERA-40), ECMWF Interim Re-Analysis (ERA-Interim), Japanese 25-year Reanalysis (JRA-25), and Modern Era Retrospective-Analysis for Research and Applications (MERRA)] over three decades spanning 1979–2008. Bias and year-to-year correlation between the reanalyses and observations are assessed for four variables: mean sea level pressure (MSLP), near-surface air temperature (Ts), 500-hPa geopotential height (H500), and 500-hPa temperature (T500). It was found that CFSR and MERRA are of a sufficiently high resolution for the height of the orography to be accurately reproduced at coastal observation stations. Progressively larger negative Ts biases at these coastal stations are apparent for reanalyses in order of decreasing resolution. However, orography height bias cannot explain large winter warm biases in CFSR, JRA-25, and MERRA (11.1°, 10.2°, and 7.9°C, respectively) at Amundsen–Scott and Vostok, which have been linked to problems with representing the surface energy balance. Linear trends in the annual-mean T500 and H500 averaged over Antarctica as a whole were found to be most reliable in CFSR, ERA-Interim, and MERRA, none of which show significant trends over the period 1979–2008. In contrast JRA-25 shows significant negative trends over 1979–2008 and ERA-40 gives significant positive trends during the 1980s (evident in both T500 and H500). Comparison to observations indicates that the positive trend in ERA-40 is spurious. At the smaller spatial scale of individual stations all five reanalyses have some spurious trends. However, ERA-Interim was found to be the most reliable for MSLP and H500 trends at station locations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-15
    Description: Statistical relationships between future and historical model runs in multimodel ensembles (MMEs) are increasingly exploited to make more constrained projections of climate change. However, such emergent constraints may be spurious and can arise because of shared (common) errors in a particular MME or because of overly influential models. This study assesses the robustness of emergent constraints used for Arctic warming by comparison of such constraints in ensembles generated by the two most recent Coupled Model Intercomparison Project (CMIP) experiments: CMIP3 and CMIP5. An ensemble regression approach is used to estimate emergent constraints in Arctic wintertime surface air temperature change over the twenty-first century under the Special Report on Emission Scenarios (SRES) A1B scenario in CMIP3 and the Representative Concentration Pathway (RCP) 4.5 scenario in CMIP5. To take account of different scenarios, this study focuses on polar amplification by using temperature responses at each grid point that are scaled by the global mean temperature response for each climate model. In most locations, the estimated emergent constraints are reassuringly similar in CMIP3 and CMIP5 and differences could have easily arisen from sampling variation. However, there is some indication that the emergent constraint and polar amplification is substantially larger in CMIP5 over the Sea of Okhotsk and the Bering Sea. Residual diagnostics identify one climate model in CMIP5 that has a notable influence on estimated emergent constraints over the Bering Sea and one in CMIP3 that that has a notable influence more widely along the sea ice edge and into midlatitudes over the western North Atlantic.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-27
    Description: This paper examines the annual cycle and trends in Antarctic sea ice extent (SIE) for 18 models used in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that were run with historical forcing for the 1850s to 2005. Many of the models have an annual SIE cycle that differs markedly from that observed over the last 30 years. The majority of models have too small of an SIE at the minimum in February, while several of the models have less than two-thirds of the observed SIE at the September maximum. In contrast to the satellite data, which exhibit a slight increase in SIE, the mean SIE of the models over 1979–2005 shows a decrease in each month, with the greatest multimodel mean percentage monthly decline of 13.6% decade−1 in February and the greatest absolute loss of ice of −0.40 × 106 km2 decade−1 in September. The models have very large differences in SIE over 1860–2005. Most of the control runs have statistically significant trends in SIE over their full time span, and all of the models have a negative trend in SIE since the mid-nineteenth century. The negative SIE trends in most of the model runs over 1979–2005 are a continuation of an earlier decline, suggesting that the processes responsible for the observed increase over the last 30 years are not being simulated correctly.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-10
    Description: The authors report a hypothesis for the dynamical mechanisms responsible for the strengthening of the Southern Hemisphere circumpolar winds from the lower stratosphere to the surface due to the ozone hole. A general circulation model forced by stratospheric ozone depletion representative of the ozone hole period successfully reproduced these observed changes. Investigation of the dynamical characteristics of the model therefore provides some insight into the actual mechanisms. From this the authors suggest the following: 1) An initial (radiative) strengthening of the lower-stratospheric winds as a result of ozone depletion conditions the polar vortex so that fewer planetary waves propagate up from the troposphere, resulting in weaker planetary wave driving. 2) This causes further strengthening of the vortex, which results in an additional reduction in upward-propagating planetary waves and initiates a positive feedback mechanism in which the weaker wave driving and the associated strengthened winds are drawn downward to the tropopause. 3) In the troposphere the midlatitude jet shifts poleward in association with increases in the synoptic wave fluxes of heat and momentum, which are the result of a positive feedback mechanism consisting of two components: 4) increases in low-level baroclinicity, and the subsequent generation of baroclinic activity (associated with a poleward heat flux), are collocated with the jet latitudinal position, and 5) strengthening anticyclonic shear increases the refraction of wave activity equatorward (associated with a poleward momentum flux). Finally, 6) confinement of planetary waves in the high-latitude troposphere is an important step to couple the stratospheric changes to the tropospheric response.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...