ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-01
    Description: The climate of the past millennium provides a baseline for understanding the background of natural climate variability upon which current anthropogenic changes are superimposed. As this period also contains high data density from proxy sources (e.g., ice cores, stalagmites, corals, tree rings, and sediments), it provides a unique opportunity for understanding both global and regional-scale climate responses to natural forcing. Toward that end, an ensemble of simulations with the Community Earth System Model (CESM) for the period 850–2005 (the CESM Last Millennium Ensemble, or CESM-LME) is now available to the community. This ensemble includes simulations forced with the transient evolution of solar intensity, volcanic emissions, greenhouse gases, aerosols, land-use conditions, and orbital parameters, both together and individually. The CESM-LME thus allows for evaluation of the relative contributions of external forcing and internal variability to changes evident in the paleoclimate data record, as well as providing a longer-term perspective for understanding events in the modern instrumental period. It also constitutes a dynamically consistent framework within which to diagnose mechanisms of regional variability. Results demonstrate an important influence of internal variability on regional responses of the climate system during the past millennium. All the forcings, particularly large volcanic eruptions, are found to be regionally influential during the preindustrial period, while anthropogenic greenhouse gas and aerosol changes dominate the forced variability of the mid- to late twentieth century.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-03
    Description: Multidecadal hydroclimate variability has been expressed as “megadroughts” (dry periods more severe and prolonged than observed over the twentieth century) and corresponding “megapluvial” wet periods in many regions around the world. The risk of such events is strongly affected by modes of coupled atmosphere–ocean variability and by external impacts on climate. Accurately assessing the mechanisms for these interactions is difficult, since it requires large ensembles of millennial simulations as well as long proxy time series. Here, the Community Earth System Model (CESM) Last Millennium Ensemble is used to examine statistical associations among megaevents, coupled climate modes, and forcing from major volcanic eruptions. El Niño–Southern Oscillation (ENSO) strongly affects hydroclimate extremes: larger ENSO amplitude reduces megadrought risk and persistence in the southwestern United States, the Sahel, monsoon Asia, and Australia, with corresponding increases in Mexico and the Amazon. The Atlantic multidecadal oscillation (AMO) also alters megadrought risk, primarily in the Caribbean and the Amazon. Volcanic influences are felt primarily through enhancing AMO amplitude, as well as alterations in the structure of both ENSO and AMO teleconnections, which lead to differing manifestations of megadrought. These results indicate that characterizing hydroclimate variability requires an improved understanding of both volcanic climate impacts and variations in ENSO/AMO teleconnections.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-12
    Description: The hydroclimate response to volcanic eruptions depends both on volcanically induced changes to the hydrologic cycle and on teleconnections with the El Niño–Southern Oscillation (ENSO), complicating the interpretation of offsets between proxy reconstructions and model output. Here, these effects are separated, using the Community Earth System Model Last Millennium Ensemble (CESM-LME), by examination of ensemble realizations with distinct posteruption ENSO responses. Hydroclimate anomalies in monsoon Asia and the western United States resemble the El Niño teleconnection pattern after “Tropical” and “Northern” eruptions, even when ENSO-neutral conditions are present. This pattern results from Northern Hemisphere (NH) surface cooling, which shifts the intertropical convergence zone equatorward, intensifies the NH subtropical jet, and suppresses the Southeast Asian monsoon. El Niño events following an eruption can then intensify the ENSO-neutral hydroclimate signature, and El Niño probability is enhanced two boreal winters following all eruption types. Additionally, the eruption-year ENSO response to eruptions is hemispherically dependent: the winter following a Northern eruption tends toward El Niño, while Southern volcanoes enhance the probability of La Niña events and Tropical eruptions have a very slight cooling effect. Overall, eruption-year hydroclimate anomalies in CESM disagree with the proxy record in both Southeast Asia and North America, suggesting that model monsoon representation cannot be solely responsible. Possible explanations include issues with the model ENSO response, the spatial or temporal structure of volcanic aerosol distribution, or data uncertainties.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-29
    Description: The majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more frequent exceedances of the 5 mm/day rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, previously described in the literature as an increase in ‘extreme El Niño events’; however, these exceedance frequencies vary widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations with the Coupled Model Intercomparison Project phase 5 (CMIP5) to diagnose the mechanisms for these differences. The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies most in models with (1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in local convective cloud shading, enabling more local warming; and (2) smaller historical warm SST biases in the far eastern equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases suggests the possibility of using observable metrics as ‘emergent constraints’ on future extreme El Niño, and a proof of concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-15
    Description: Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-29
    Description: This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-15
    Description: Results are presented from the Community Climate System Model, version 4 (CCSM4), simulation of the Last Glacial Maximum (LGM) from phase 5 of the Coupled Model Intercomparison Project (CMIP5) at the standard 1° resolution, the same resolution as the majority of the CCSM4 CMIP5 long-term simulations for the historical and future projection scenarios. The forcings and boundary conditions for this simulation follow the protocols of the Paleoclimate Modeling Intercomparison Project, version 3 (PMIP3). Two additional CCSM4 CO2 sensitivity simulations, in which the concentrations are abruptly changed at the start of the simulation to the low 185 ppm LGM concentrations (LGMCO2) and to a quadrupling of the preindustrial concentration (4×CO2), are also analyzed. For the full LGM simulation, the estimated equilibrium cooling of the global mean annual surface temperature is 5.5°C with an estimated radiative forcing of −6.2 W m−2. The radiative forcing includes the effects of the reduced LGM greenhouse gases, ice sheets, continental distribution with sea level lowered by approximately 120 m from the present, and orbital parameters, but not changes to atmospheric aerosols or vegetation biogeography. The LGM simulation has an equilibrium climate sensitivity (ECS) of 3.1(±0.3)°C, comparable to the CCSM4 4×CO2 result. The LGMCO2 simulation shows a greater ECS of 4.2°C. Other responses found at the LGM in CCSM4 include a global precipitation rate decrease at a rate of ~2% °C−1, similar to climate change simulations in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4); a strengthening of the Atlantic meridional overturning circulation (AMOC) with a shoaling of North Atlantic Deep Water and a filling of the deep basin up to sill depth with Antarctic Bottom Water; and an enhanced seasonal cycle accompanied by reduced ENSO variability in the eastern Pacific Ocean’s SSTs.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-08-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-02-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-06-01
    Description: The climate sensitivity of the Community Climate System Model version 3 (CCSM3) is studied for two past climate forcings, the Last Glacial Maximum (LGM) and the mid-Holocene. The LGM, approximately 21 000 yr ago, is a glacial period with large changes in the greenhouse gases, sea level, and ice sheets. The mid-Holocene, approximately 6000 yr ago, occurred during the current interglacial with primary changes in the seasonal solar irradiance. The LGM CCSM3 simulation has a global cooling of 4.5°C compared to preindustrial (PI) conditions with amplification of this cooling at high latitudes and over the continental ice sheets present at LGM. Tropical sea surface temperature (SST) cools by 1.7°C and tropical land temperature cools by 2.6°C on average. Simulations with the CCSM3 slab ocean model suggest that about half of the global cooling is explained by the reduced LGM concentration of atmospheric CO2 (∼50% of present-day concentrations). There is an increase in the Antarctic Circumpolar Current and Antarctic Bottom Water formation, and with increased ocean stratification, somewhat weaker and much shallower North Atlantic Deep Water. The mid-Holocene CCSM3 simulation has a global, annual cooling of less than 0.1°C compared to the PI simulation. Much larger and significant changes occur regionally and seasonally, including a more intense northern African summer monsoon, reduced Arctic sea ice in all months, and weaker ENSO variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...