ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (4)
  • 1
    Publication Date: 2011-01-01
    Description: Characteristics of the Arctic Ocean’s Beaufort Sea high are examined using fields from the NCEP–NCAR reanalysis. At a 2-hPa contour interval, the Beaufort Sea high appears as a closed anticyclone in the long-term annual mean sea level pressure field and in spring. In winter, the Beaufort Sea region is influenced by a pressure ridge at sea level extending from the Siberian high to the Yukon high over northwestern Canada. As assessed from 6-hourly surface winds, the mean frequency of anticyclonic surface winds over the Beaufort Sea region is fairly constant through the year. While for all seasons a strong closed high can be interpreted as the surface expression of an amplified western North American ridge at 500 hPa, there is some suggestion of a split flow, where the ridge linked to the surface high is separated from the ridge to the south that lies within the main belt of westerlies. The Aleutian low in the North Pacific tends to be deeper than normal when there is a strong Beaufort Sea high. In all seasons but autumn, a strong Beaufort Sea high is associated with positive lower-tropospheric temperature anomalies covering much of the Arctic Ocean; positive anomalies are especially pronounced in spring. Seasons with a weak anticyclone show broadly opposing anomalies. A strong high is found to be a feature of the negative phase of the summer northern annular mode, the positive phase of the Pacific–North American wave train, and, to a weaker extent, the positive phase of the summer Arctic dipole anomaly and Pacific decadal oscillation. The unifying theme is that, to varying degrees, the high-latitude 500-hPa ridge associated with the Beaufort Sea high represents a center of action in each teleconnection pattern.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-01
    Description: A fascinating feature of the northern high-latitude circulation is a prominent summer maximum in cyclone activity over the Arctic Ocean, centered near the North Pole in the long-term mean. This pattern is associated with the influx of lows generated over the Eurasian continent and cyclogenesis over the Arctic Ocean itself. Its seasonal onset is linked to the following: an eastward shift in the Urals trough, migration of the 500-hPa vortex core to near the pole, and development of a separate region of high-latitude baroclinicity. The latter two features are consistent with differential atmospheric heating between the Arctic Ocean and snow-free land. Variability in the strength of the cyclone pattern can be broadly linked to the phase of the summer northern annular mode. When the cyclone pattern is well developed, the 500-hPa vortex is especially strong and symmetric about the pole, with negative sea level pressure (SLP) anomalies over the pole and positive anomalies over middle latitudes. Net precipitation tends to be anomalously positive over the Arctic Ocean. When poorly developed, the opposite holds.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2005-12-01
    Description: Monthly precipitation based on forecasts from the new 40-yr ECMWF Re-Analysis (ERA-40) is evaluated for the north polar region (the region north of 45°N), the terrestrial Arctic drainage, and its four major watersheds: the Ob, Yenisey, Lena, and Mackenzie basins. Corresponding evaluations are performed for precipitation from the NCEP–NCAR reanalysis, the earlier 15-yr ERA (ERA-15), and satellite-derived estimates from the Global Precipitation Climatology Project (GPCP). Evaluations rely on an improved gridded dataset of precipitation derived from monthly gauge data during the period 1979–93. The available number of gauges has declined since 1993, making it difficult to perform evaluations for later years. ERA-40 depicts monthly precipitation much better than NCEP–NCAR. This is with respect to both lower mean biases and higher squared correlations between modeled and observed grid-cell time series. Squared correlations between monthly time series of ERA-40 and observed precipitation, averaged over the four major Arctic watersheds, typically range from 0.60 to 0.90. Performance over the central Arctic Ocean is poor in winter and spring, but improves in summer and autumn when precipitation amounts are higher. While the overall performance of ERA-40 is better than NCEP–NCAR, it offers no obvious improvement over ERA-15. In some respects, ERA-15 performs slightly better in summer. This lack of improvement may relate to difficulties in assimilating satellite radiances. All of the reanalyses provide better depictions of monthly precipitation than do the GPCP satellite retrievals. This applies to both land areas and the Arctic Ocean. There is no clear improvement in the GPCP estimates after 1987 when the Television Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) data began to be used. The GPCP estimates are best in summer.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...