ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-01
    Description: Over the past 100 years, the collaborative effort of the international science community, including government weather services and the media, along with the associated proliferation of environmental observations, improved scientific understanding, and growth of technology, has radically transformed weather forecasting into an effective global and regional environmental prediction capability. This chapter traces the evolution of forecasting, starting in 1919 [when the American Meteorological Society (AMS) was founded], over four eras separated by breakpoints at 1939, 1956, and 1985. The current state of forecasting could not have been achieved without essential collaboration within and among countries in pursuing the common weather and Earth-system prediction challenge. AMS itself has had a strong role in enabling this international collaboration.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-19
    Description: Recently Asaadi et al. found that an easterly wave (EW) train over the Atlantic and eastern Pacific is oriented in a southeast–northwest direction because of the observed tilt in the easterly jet. This tilt results in only one out of four (~25%) waves to be located at the cyclonic critical layer south of the jet axis in a comoving frame, and they subsequently developed into named storms. Asaadi et al. suggested a geometrical view for developing disturbances, which is the coexistence of a nonlinear critical layer and a region of weak meridional potential vorticity (PV) gradient over several days. Asaadi et al. focused on the developing waves and did not investigate the nondeveloping ones. To determine whether the nondeveloping EWs are not associated with a critical layer, a simple objective tracking technique is used to identify EWs. Composite views of the large-scale structure and characteristics of nondeveloping EWs show that ~91% of nondeveloping waves are not located on a critical layer, while the remaining ~9% indicate characteristics similar to the developing waves. Examination of the composite Okubo–Weiss parameter indicates that the nondeveloping waves are characterized by larger negative values, implying that they are dominated by deformation, unlike developing waves, which tend to be more immune from the deformation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-01
    Description: A World Meteorological Organization weather and climate extremes committee has judged that the world’s longest reported distance for a single lightning flash occurred with a horizontal distance of 321 km (199.5 mi) over Oklahoma in 2007, while the world’s longest reported duration for a single lightning flash is an event that lasted continuously for 7.74 s over southern France in 2012. In addition, the committee has unanimously recommended amendment of the AMS Glossary of Meteorology definition of lightning discharge as a “series of electrical processes taking place within 1 s” by removing the phrase “within 1 s” and replacing it with “continuously.” Validation of these new world extremes 1) demonstrates the recent and ongoing dramatic augmentations and improvements to regional lightning detection and measurement networks, 2) provides reinforcement regarding the dangers of lightning, and 3) provides new information for lightning engineering concerns.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-01
    Description: The Observing System Research and Predictability Experiment (THORPEX) was a 10-yr, international research program organized by the World Meteorological Organization’s World Weather Research Program. THORPEX was motivated by the need to accelerate the rate of improvement in the accuracy of 1-day to 2-week forecasts of high-impact weather for the benefit of society, the economy, and the environment. THORPEX, which took place from 2005 to 2014, was the first major international program focusing on the advancement of global numerical weather prediction systems since the Global Atmospheric Research Program, which took place almost 40 years earlier, from 1967 through 1982. The scientific achievements of THORPEX were accomplished through bringing together scientists from operational centers, research laboratories, and the academic community to collaborate on research that would ultimately advance operational predictive skill. THORPEX included an unprecedented effort to make operational products readily accessible to the broader academic research community, with community efforts focused on problems where challenging science intersected with the potential to accelerate improvements in predictive skill. THORPEX also collaborated with other major programs to identify research areas of mutual interest, such as topics at the intersection of weather and climate. THORPEX research has 1) increased our knowledge of the global-to-regional influences on the initiation, evolution, and predictability of high-impact weather; 2) provided insight into how predictive skill depends on observing strategies and observing systems; 3) improved data assimilation and ensemble forecast systems; 4) advanced knowledge of high-impact weather associated with tropical and polar circulations and their interactions with midlatitude flows; and 5) expanded society’s use of weather information through applied and social science research.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-13
    Description: Motivated by Dunkerton et al., a climatological study of 54 developing easterly waves in 1998–2001 was performed. Time-lagged composites in a translating reference frame following the disturbances indicate a weak meridional potential vorticity (PV) gradient of the easterly jet and a cyclonic critical layer located slightly to the south of the weak PV gradient, consistent with previous findings in the marsupial paradigm. Using a closed PV contour as a criterion for the formation of the cat’s-eye, it was shown that on average it takes ~2.6 days for open PV contours to transform to a closed coherent structure. Bootstrap analysis was then applied to determine the reliability of the easterly wave–like pattern in the composite perturbation PV analysis. It is suggested that the coexistence of a nonlinear critical layer and a region of weak meridional PV gradient over several days, found to occur in only ~25% of the easterly waves, might be a major factor to distinguish developing and nondeveloping disturbances. This finding may explain why only a small fraction of easterly waves contribute to tropical cyclogenesis. Additionally, an analytic time scale of the form was obtained, where Q is the mass sink, ε is the amplitude of the initial disturbance, and τ is the cat’s-eye formation time that governs the onset of nonlinearity for forced disturbances on a parabolic jet critical layer. This time scale is consistent with that found in 54 cases of easterly waves that developed into named storms, highlighting the importance of nonlinear and diabatic processes in cat’s-eye formation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-13
    Description: A shallow-water model is used to study the role of critical layers in tropical cyclogenesis. Forced and unforced problems of disturbances on a parabolic jet associated with weak basic-state meridional potential vorticity (PV) gradients, leading to Kelvin cat’s-eye formation around the jet axis, are first investigated. Numerical simulations with various initial disturbance magnitudes and structures suggest that the results of previous studies can be extended to the next level of complexity toward the more realistic atmosphere. The model is therefore initialized using an observed jet profile obtained from the reanalysis data presented in Part I of this study. For this asymmetric marginally stable basic-state profile, unforced (free) and forced linear integrations show spatial contraction of the perturbation structures in the meridional direction, similar to what occurred in experiments on the parabolic jet. Nonlinear free simulations highlight the role of nonlinear processes in redistributing PV within the critical-layer region. However, they do not yield a realistic time scale for the formation of the cat’s-eye. By including diabatic heating as a mass sink term to represent convective PV generation, the nonlinear forced simulation is found to produce a realistic time scale for cat’s-eye formation, and confirms the analytical solution of τeτQ ~ O(ε−1) obtained in Part I. These results highlight the synergic role of the dynamical mechanisms, including wave breaking and PV redistribution within the nonlinear critical layer characterized by weak PV gradients and the thermodynamical mechanisms such as convectively generated PV anomalies in the cat’s-eye formation in tropical cyclogenesis.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-01
    Description: The Pan and Parapan American Games (PA15) are the third largest sporting event in the world and were held in Toronto in the summer of 2015 (10–26 July and 7–15 August). This was used as an opportunity to coordinate and showcase existing innovative research and development activities related to weather, air quality (AQ), and health at Environment and Climate Change Canada. New observational technologies included weather stations based on compact sensors that were augmented with black globe thermometers, two Doppler lidars, two wave buoys, a 3D lightning mapping array, two new AQ stations, and low-cost AQ and ultraviolet sensors. These were supplemented by observations from other agencies, four mobile vehicles, two mobile AQ laboratories, and two supersites with enhanced vertical profiling. High-resolution modeling for weather (250 m and 1 km), AQ (2.5 km), lake circulation (2 km), and wave models (250-m, 1-km, and 2.5-km ensembles) were run. The focus of the science, which guided the design of the observation network, was to characterize and investigate the lake breeze, which affects thunderstorm initiation, air pollutant transport, and heat stress. Experimental forecasts and nowcasts were provided by research support desks. Web portals provided access to the experimental products for other government departments, public health authorities, and PA15 decision-makers. The data have been released through the government of Canada’s Open Data Portal and as a World Meteorological Organization’s Global Atmospheric Watch Urban Research Meteorology and Environment dataset.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-20
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-11-15
    Description: Ensemble integrations using a primitive-equation dry atmospheric model were performed to investigate the atmospheric transient response to tropical thermal forcings that resemble El Niño and La Niña. The response develops in the North Pacific within 1 week after the integration. The signal in the North Atlantic and Europe is established by the end of the second week. Significant asymmetry was found between the responses in El Niño and La Niña that is similar to the observations, that is, one feature is that the 550-hPa positive height response in the North Pacific of the La Niña run is located about 30° west of the negative response of the El Niño run; another feature is that the responses in the North Atlantic and Europe for the La Niña and El Niño cases have similar patterns with the same polarity. The first feature is established within 2 weeks of the integration, while the second feature develops starting from the end of the second week. Several factors contribute to this nonlinearity of the response. In the Tropics, the shape of the Rossby wave response and the zonal extent of the Kelvin wave are not symmetric between El Niño and La Niña, which seems to be associated with the dependence of the wave property on the modified zonal mean flow. This is especially important in the equatorial region to the west of the forcing, which is likely responsible for the phase shift of the major extratropical response in the North Pacific. The transient eddy activity in the extratropics feeds back to the response and helps to maintain the nonlinearity.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-02-15
    Description: A primitive equation dry atmospheric model is used to perform ensemble seasonal predictions. The predictions are done for 51 winter seasons [December–January–February (DJF)] from 1948 to 1998. Ensembles of 24 forecasts are produced, with initial conditions of 1 December plus small perturbations. The model uses a forcing field that is calculated empirically from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalyses. The forcing used to forecast a given winter is the sum of its winter climatological forcing plus an anomaly. The anomalous forcing is obtained as that of the month prior to the start of the forecast (November), which is also calculated from NCEP data. The predictions are thus made without using any information about the season to be predicted. The ensemble-mean predictions for the 51 winters are verified against the NCEP–NCAR reanalyses. Comparisons are made with the results obtained with a full GCM. It is found that the skill of the simple GCM is comparable in many ways to that of the full GCM. The skill in predicting the amplitude of the main patterns of Northern Hemisphere mean-seasonal variability, the Arctic Oscillation (AO) and the Pacific–North American (PNA) pattern is also discussed. The simple GCM has skill not only in predicting the PNA pattern during winters with strong ENSO forcing, but it also has skill in predicting the AO in winters without appreciable ENSO forcing.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...