ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • Mineralogical Society of America  (2)
  • American Meteorological Society  (1)
  • Geological Society of America (GSA)
  • Geosciences  (3)
  • 1
    Publication Date: 2012-07-01
    Description: Manganoquadratite, ideally AgMnAsS3, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as dark gray, anhedral to subhedral grains up 0.5 mm across, closely associated with alabandite, Mn-rich calcite, Mn-rich sphalerite, proustite, pyrite, pyrrhotite, tennantite, argentotennantite, stannite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S. Manganoquadratite is opaque with a metallic luster and possesses a reddish-brown streak. It is brittle, the Vickers microhardness (VHN10) is 81 kg/mm2 (range 75–96) (corresponding Mohs hardness of 2–2½). The calculated density is 4.680 g/cm3 (on the basis of the empirical formula). In plane-polarized reflected light, manganoquadratite is moderately bireflectant and very weakly pleochroic from dark gray to a blue gray. Internal reflections are absent. Between crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 29.5, 31.8 (471.1 nm), 28.1, 30.5 (548.3 nm), 27.3, 29.3 (586.6 nm), and 26.0, 28.2 (652.3 nm), respectively.Manganoquadratite is tetragonal, space group P4322, with unit-cell parameters: a = 5.4496(5), c = 32.949(1) Å, V = 978.5(1) Å3, c:a = 6.046, Z = 8. The structure, refined to R1 = 0.0863 for 907 reflections with Fo 〉 4σ(Fo), consists of a stacking along [001] of alabandite-like Mn2S2 layers connected to each to other by a couple of AgAsS2 sheets where As3+ forms typical AsS3 groups, whereas Ag+ cations are fivefold coordinated. The six strongest lines in the observed X-ray powder-diffraction pattern [d in Å (I/I0) (hkl)] are: 3.14 (60) (116), 2.739 (50) (0 0 12), 2.710 (100) (200), 1.927(70) (2 0 12 + 220), 1.645 (25) (3 0 16), and 1.573 (20) (22 12).Electron microprobe analyses gave the chemical formula (on the basis of six atoms) (Ag0.95Cu0.05)∑=1.00 (Mn0.96Pb0.04)∑=1.00(As0.87Sb0.14)∑=1.01S2.99, leading to the simplified formula AgMnAsS3.The name was chosen to indicate the close analogy of the formula and unit-cell dimensions with quadratite, Ag(Cd,Pb)(As,Sb)S3. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA 2011-008.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-01
    Description: Menchettiite, ideally AgPb2.40Mn1.60Sb3As2S12, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as black, anhedral to subhedral grains up to 200 µm across, closely associated with orpiment, tennantite/tetrahedrite, other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S, and calcite. Menchettiite is opaque with a metallic luster and possesses a black streak. It is brittle, with uneven fracture; the Vickers microhardness (VHN100) is 128 kg/mm2 (range 119–136) (corresponding to a Mohs hardness of 2½–3). The calculated density is 5.146 g/cm3 (on the basis of the empirical formula). In plane-polarized incident light, menchettiite is weakly to moderately bireflectant and weakly pleochroic from dark gray to a dark green. Internal reflections are absent. Between crossed polarizers, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 33.1, 39.8 (471.1 nm), 31.8, 38.0 (548.3 nm), 30.9, 37.3 (586.6 nm), and 29.0, 35.8 (652.3 nm), respectively.Menchettiite is monoclinic, space group P21/n, with unit-cell parameters: a = 19.233(2), b = 12.633(3), c = 8.476(2) Å, ß = 90.08(2)°, V = 2059.4(8) Å3, a: b: c 1.522:1:0.671, Z = 2, and it is twinned on {100}. The crystal structure was refined to R = 0.0903 for 2365 reflections with Fo 〉 4s(Fo) and it resulted to be topologically identical to those of ramdohrite, uchucchacuaite, and fizélyite. The six strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 3.4066 (39) (3¯12), 3.4025 (39) (312), 3.2853 (100) (520), 2.8535 (50) (2¯32), 2.8519 (47) (232), and 2.1190 (33) (004). Electron-microprobe analyses gave the chemical formula Ag1.95Cu0.01Pb4.81Mn3.20Fe0.02Zn0.01Sb6.09As3.94Bi0.01S23.95Se0.01, on the basis of 44 atoms and according to the structure refinement results. Menchettiite can be classified among the Sb-rich members of the lillianite homeotypic series, which are described with the general formula AgxPb3-2xSb2+xS6. Besides the heterovalent substitution 2Pb2+ ? Ag+ + Sb3+ taken into consideration by the above formula, two isovalent substitutions relate menchettiite to the other lillianite homeotypes, i.e., Mn2+ ? Pb2+ and As3+ ? Sb3+. The name is after Silvio Menchetti (1937–), Professor of Mineralogy and Crystallography at the University of Florence. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification, IMA (2011–009).
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-10
    Description: The chemical species emitted by forests create complex atmospheric oxidation chemistry and influence global atmospheric oxidation capacity and climate. The Southern Oxidant and Aerosol Study (SOAS) provided an opportunity to test the oxidation chemistry in a forest where isoprene is the dominant biogenic volatile organic compound. Hydroxyl (OH) and hydroperoxyl (HO2) radicals were two of the hundreds of atmospheric chemical species measured, as was OH reactivity (the inverse of the OH lifetime). OH was measured by laser-induced fluorescence (LIF) and by taking the difference in signals without and with an OH scavenger that was added just outside the instrument’s pinhole inlet. To test whether the chemistry at SOAS can be simulated by current model mechanisms, OH and HO2 were evaluated with a box model using two chemical mechanisms: Master Chemical Mechanism, version 3.2 (MCMv3.2), augmented with explicit isoprene chemistry and MCMv3.3.1. Measured and modeled OH peak at about 106 cm−3 and agree well within combined uncertainties. Measured and modeled HO2 peak at about 27 pptv and also agree well within combined uncertainties. Median OH reactivity cycled between about 11 s−1 at dawn and about 26 s−1 during midafternoon. A good test of the oxidation chemistry is the balance between OH production and loss rates using measurements; this balance was observed to within uncertainties. These SOAS results provide strong evidence that the current isoprene mechanisms are consistent with measured OH and HO2 and, thus, capture significant aspects of the atmospheric oxidation chemistry in this isoprene-rich forest.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...