ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-12-01
    Description: A currently popular idea is that El Niño–Southern Oscillation (ENSO) can be viewed as a linear deterministic system forced by noise representing processes with periods shorter than ENSO. Also, there is observational evidence to suggest that the Madden–Julian oscillation (MJO) acts to trigger and/or amplify the warm phase of ENSO in this way. The feedback of the slower process, ENSO, to higher-frequency atmospheric phenomena, of which a large part of the variability in the intraseasonal band is due to the MJO, has received little attention. This paper considers the hypothesis that the probability of an El Niño event is modified by high MJO activity and that, in turn, the MJO is regulated by ENSO activity. If this is indeed the case, then viewing ENSO as a low-frequency oscillation forced by additive stochastic noise would not present a complete picture. This paper tests the above hypothesis using a stochastically forced intermediate coupled model by allowing ENSO to directly influence the stochastic forcing. The model response to a variety of stochastic forcing types is found to be sensitive to the type of forcing applied. When the model is operated beyond its intrinsic Hopf bifurcation, its probability distribution function (PDF) is fundamentally altered when the stochastic forcing is changed from additive to multiplicative. The model integration period also influences the shape of the PDF, which is also compared to the PDF derived from observations. It is found that multiplicative stochastic forcing reproduces some measures of the observations better than the additive stochastic forcing.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-09-15
    Description: The optimal forcing patterns for El Niño–Southern Oscillation (ENSO) are examined for a hierarchy of hybrid coupled models using generalized stability theory. Specifically two cases are considered: one where the forcing is stochastic in time, and one where the forcing is time independent. The optimal forcing patterns in these two cases are described by the stochastic optimals and forcing singular vectors, respectively. The spectrum of stochastic optimals for each model was found to be dominated by a single pattern. In addition, the dominant stochastic optimal structure is remarkably similar to the forcing singular vector, and to the dominant singular vectors computed in a previous related study using a subset of the same models. This suggests that irrespective of whether the forcing is in the form of an impulse, is time invariant, or is stochastic in nature, the optimal excitation for the eigenmode that describes ENSO in each model is the same. The optimal forcing pattern, however, does vary from model to model, and depends on air–sea interaction processes. Estimates of the stochastic component of forcing were obtained from atmospheric analyses and the projection of the dominant optimal forcing pattern from each model onto this component of the forcing was computed. It was found that each of the optimal forcing patterns identified may be present in nature and all are equally likely. The existence of a dominant optimal forcing pattern is explored in terms of the effective dimension of the coupled system using the method of balanced truncation, and was found to be O(1) for the models used here. The implications of this important result for ENSO prediction and predictability are discussed.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-09-01
    Description: Generalized linear stability theory is applied to the wind-driven ocean circulation in the form of a double gyre described by the barotropic quasigeostrophic vorticity equation. The development of perturbations on this circulation is considered. The circulation fields are inhomogeneous, and regions of straining flow render non-normal the tangent linear operators that describe the time evolution of perturbation energy and enstrophy. When the double-gyre circulation is asymptotically stable, growth of perturbation energy and enstrophy is still possible due to linear interference of its nonorthogonal eigenmodes. The sources and sinks of perturbation energy and enstrophy associated with the interference process are traditionally associated with the interaction of perturbation stresses with the mean flow. These ideas are used to understand the response of an asymptotically stable double-gyre circulation to stochastic wind stress forcing. Calculation of the optimal forcing patterns (stochastic optimals) reveals that much of the stochastically induced variability can be explained by one pattern. Variability induced by this pattern is maintained by long and short Rossby waves that interact with the western boundary currents, and perturbation growth occurs through barotropic processes. The perturbations that maintain the stochastically induced variance in this way have a large projection on some of the most non-normal, least-damped eigenmodes of the double-gyre circulation. Perturbation growth in nonautonomous and asymptotically unstable systems is also considered in the same framework. The Lyapunov vectors of unstable flows are found to have a large projection on some of the most non-normal, least-damped eigenmodes of the time mean circulation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-10
    Description: One of the many applications of data assimilation is the estimation of adequate initial conditions for model forecasts. In this work, the authors evaluate to what extent the incremental, strong-constraint, four-dimensional variational data assimilation (IS4DVAR) can improve prediction of mesoscale variability in the East Australian Current (EAC) using the Regional Ocean Modeling System (ROMS). The observations considered in the assimilation experiments are daily composites of satellite sea surface temperature (SST), 7-day average reanalysis of satellite altimeter sea level anomalies, and subsurface temperature profiles from high-resolution expendable bathythermograph (XBT). Considering all available observations for years 2001 and 2002, ROMS forecast initial conditions are generated every week by assimilating the available observations from the 7 days prior to the forecast initial time. It is shown that assimilation of surface information only [SST and sea surface height (SSH)] results in poor estimates of the true subsurface ocean state (as depicted by the XBTs) and therefore poor forecast skill of subsurface conditions. Including the XBTs in the assimilation experiments improves the ocean state estimation in the vicinity of the XBT transects. By introducing subsurface pseudo-observations (which are called synthetic CTD) based on an empirical relationship between satellite surface observations and subsurface variability, the authors find a significant improvement in ocean state estimates that leads to skillful forecasts for up to 2 weeks in the domain considered.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...