ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-06-01
    Description: ScaleX is a collaborative measurement campaign, collocated with a long-term environmental observatory of the German Terrestrial Environmental Observatories (TERENO) network in the mountainous terrain of the Bavarian Prealps, Germany. The aims of both TERENO and ScaleX include the measurement and modeling of land surface–atmosphere interactions of energy, water, and greenhouse gases. ScaleX is motivated by the recognition that long-term intensive observational research over years or decades must be based on well-proven, mostly automated measurement systems, concentrated in a small number of locations. In contrast, short-term intensive campaigns offer the opportunity to assess spatial distributions and gradients by concentrated instrument deployments, and by mobile sensors (ground and/or airborne) to obtain transects and three-dimensional patterns of atmospheric, surface, or soil variables and processes. Moreover, intensive campaigns are ideal proving grounds for innovative instruments, methods, and techniques to measure quantities that cannot (yet) be automated or deployed over long time periods. ScaleX is distinctive in its design, which combines the benefits of a long-term environmental-monitoring approach (TERENO) with the versatility and innovative power of a series of intensive campaigns, to bridge across a wide span of spatial and temporal scales. This contribution presents the concept and first data products of ScaleX-2015, which occurred in June–July 2015. The second installment of ScaleX took place in summer 2016 and periodic further ScaleX campaigns are planned throughout the lifetime of TERENO. This paper calls for collaboration in future ScaleX campaigns or to use our data in modelling studies. It is also an invitation to emulate the ScaleX concept at other long-term observatories.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-01
    Description: The ability of C-band polarimetric radar to account for strong attenuation/differential attenuation is demonstrated in two cases of heavy rain that occurred in the Chicago, Illinois, metropolitan area on 5 August 2008 and in central Oklahoma on 10 March 2009. The performance of the polarimetric attenuation correction scheme that separates relative contributions of “hot spots” (i.e., strong convective cells) and the rest of the storm to the path-integrated total and differential attenuation has been explored. It is shown that reliable attenuation correction is possible if the radar signal is attenuated by as much as 40 dB. Examination of the experimentally derived statistics of the ratios of specific attenuation Ah and differential attenuation ADP to specific differential phase KDP in hot spots is included in this study. It is shown that these ratios at C band are highly variable within the hot spots. Validation of the attenuation correction algorithm at C band has been performed through cross-checking with S-band radar measurements that were much less affected by attenuation. In the case of the Oklahoma storm, a comparison was made between the data collected by closely located C-band and S-band polarimetric radars.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...