ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2018. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 31, no. 1 (2018): 60–70, doi:10.5670/oceanog.2018.110.
    Description: Although the continental shelf and slope south of New England have been the subject of recent studies that address decadal-scale warming and interannual variability of water mass properties, it is not well understood how these changes affect shelf-break exchange processes. In recent years, observations of anomalous shelf and slope conditions obtained from the Ocean Observatories Initiative Pioneer Array and other regional observing programs suggest that onshore intrusions of warm, salty waters are becoming more prevalent. Mean cross-shelf transects constructed from Pioneer Array glider observations collected from April 2014 through December 2016 indicate that slope waters have been warmer and saltier. We examine shelf-break exchange events and anomalous onshore intrusions of warm, salty water associated with warm core rings located near the shelf break in spring 2014 and winter 2017 using observations from the Pioneer Array and other sources. We also describe an additional cross-shelf intrusion of ring water in September 2014 to demonstrate that the occurrence of high-salinity waters extending across the continental shelf is rare. Observations from the Pioneer Array and other sources show warm core ring and Gulf Stream water masses intrude onto the continental shelf more frequently and penetrate further onshore than in previous decades.
    Description: GG, WZ, RT, and MD were supported by the National Science Foundation under grant OCE-1657853. WZ was also supported by grant OCE-1634965. JP is grateful for the support of the Woods Hole Oceanographic Institution Summer Student Fellow Program. AMM was supported by a grant from the MacArthur Foundation. GG and AMM were also supported by a grant from the van Beuren Charitable Foundation for collection and analysis of hydrographic data collected by the CFRF Shelf Research Fleet.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1874–1893, doi:10.1175/2011JPO4604.1.
    Description: A two-dimensional cross-shelf model of the New England continental shelf and slope is used to investigate the mean cross-shelf and vertical circulation at the shelf break and their seasonal variation. The model temperature and salinity fields are nudged toward climatology. Annual and seasonal mean wind stresses are applied on the surface in separate equilibrium simulations. The along-shelf pressure gradient force associated with the along-shelf sea level tilt is tuned to match the modeled and observed depth-averaged along-shelf velocity. Steady-state model solutions show strong seasonal variation in along-shelf and cross-shelf velocity, with the strongest along-shelf jet and interior onshore flow in winter, consistent with observations. Along-shelf sea level tilt associated with the tuned along-shelf pressure gradient increases shoreward because of decreasing water depth. The along-shelf sea level tilt varies seasonally with the wind and is the strongest in winter and weakest in summer. A persistent upwelling is generated at the shelf break with a maximum strength of 2 m day−1 at 50-m depth in winter. The modeled shelfbreak upwelling differs from the traditional view in that most of the upwelled water is from the upper continental slope instead of from the shelf in the form of a detached bottom boundary layer.
    Description: WGZ was supported by the Woods Hole Oceanographic Institution postdoctoral scholarship program. GGGandDJMwere supported byONRGrant N-00014- 06-1-0739.
    Keywords: Ocean circulation ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2641–2660, doi:10.1175/JPO-D-12-0239.1.
    Description: To quantify dynamical aspects of internal-tide generation at the Mid-Atlantic Bight shelf break, this study employs an idealized ocean model initialized by climatological summertime stratification and forced by monochromatic barotropic tidal currents at the offshore boundary. The Froude number of the scenario is subunity, and the bathymetric slope offshore of the shelf break is supercritical. A barotropic-to-baroclinic energy conversion rate of 335 W m−1 is found, with 14% of the energy locally dissipated through turbulence and bottom friction and 18% radiated onto the shelf. Consistent with prior studies, nonlinear effects result in additional super- and subharmonic internal waves at the shelf break. The subharmonic waves are subinertial, evanescent, and mostly trapped within a narrow beam of internal waves at the forcing frequency. They likely result from nonresonant triad interaction associated with strong nonlinearity. Strong vertical shear associated with the subharmonic waves tends to enhance local energy dissipation and turbulent momentum exchange (TME). A simulation with reduced tidal forcing shows an expected diminished level of harmonic energy. A quasi-linear simulation verifies the role of momentum advection in controlling the relative phases of internal tides and the efficiency of barotropic-to-baroclinic energy conversion. The local TME is tightly coupled with the internal-wave dynamics: for the chosen configuration, neglecting TME causes the internal-wave energy to be overestimated by 12%, and increasing it to high levels damps the waves on the continental shelf. This work implies a necessity to carefully consider nonlinearity and turbulent processes in the calculation of internal tidal waves generated at the shelf break.
    Description: This research was supported by Office of Naval Research Grant N00014-11-1-0701.
    Description: 2014-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Description: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Description: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 883-904, doi:10.1175/JPO-D-17-0084.1.
    Description: The dynamics controlling the along-valley (cross shelf) flow in idealized shallow shelf valleys with small to moderate Burger number are investigated, and analytical scales of the along-valley flows are derived. This paper follows Part I, which shows that along-shelf winds in the opposite direction to coastal-trapped wave propagation (upwelling regime) force a strong up-valley flow caused by the formation of a lee wave. In contrast, along-shelf winds in the other direction (downwelling regime) do not generate a lee wave and consequently force a relatively weak net down-valley flow. The valley flows in both regimes are cyclostrophic with 0(1) Rossby number. A major difference between the two regimes is the along-shelf length scales of the along-valley flows L. In the upwelling regime Ls, depends on the valley width W, and the wavelength lambda(1w) of the coastal-trapped lee wave arrested by the along-shelf flow U-s. In the downwelling regime L depends on the inertial length scale U-s|'f and W-c. The along-valley velocity scale in the upwelling regime, given by V-u approximate to root pi H-c/H-s integral W-c lambda(1w)/2 pi L-x (1+L-x(2)/L-c(2))(-1) e(-(pi Wc)/(lambda 1w),) is based on potential vorticity (PV) conservation and lee-wave dynamics (Hs and H, are the shelf and valley depth scales, respectively, and fis the Coriolis parameter). The velocity scale in the downwelling regime, given by |v(d)| approximate to (H-s/H-s)[1 + (L-x(2)/L-x(2))](-1) fL, is based on PV conservation. The velocity scales are validated by the numerical sensitivity simulations and can be useful for observational studies of along -valley transports. The work provides a framework for investigating cross -shelf transport induced by irregular shelf bathymetry and calls for future studies of this type under realistic environmental conditions and over a broader parameter space.
    Description: Both WGZ and SJL were supported by the National Science Foundation (NSF) through Grant OCE 1154575.WGZis also supported by the NSF Grant OCE 1634965 and SJL by NSF Grant OCE 1558874.
    Description: 2018-10-16
    Keywords: Ocean circulation ; Topographic effects ; Upwelling/downwelling ; Waves, oceanic ; Wind stress ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1065–1071, doi:10.1175/JTECH-D-10-05030.1.
    Description: In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature–salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag–induced salinity error of about 0.3 psu was found and successfully corrected.
    Description: This work is part of the SINOCOP and GliderBal projects funded by CSIC and Govern Balear, respectively.
    Keywords: Data processingStommel ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11),(2020): 3331–3351, https://doi.org/10.1175/JPO-D-20-0035.1.
    Description: This study examines the generation of warm spiral structures (referred to as spiral streamers here) over Gulf Stream warm-core rings. Satellite sea surface temperature imagery shows spiral streamers forming after warmer water from the Gulf Stream or newly formed warm-core rings impinges onto old warm-core rings and then intrudes into the old rings. Field measurements in April 2018 capture the vertical structure of a warm spiral streamer as a shallow lens of low-density water winding over an old ring. Observations also show subduction on both sides of the spiral streamer, which carries surface waters downward. Idealized numerical model simulations initialized with observed water-mass densities reproduce spiral streamers over warm-core rings and reveal that their formation is a nonlinear submesoscale process forced by mesoscale dynamics. The negative density anomaly of the intruding water causes a density front at the interface between the intruding water and surface ring water, which, through thermal wind balance, drives a local anticyclonic flow. The pressure gradient and momentum advection of the local interfacial flow push the intruding water toward the ring center. The large-scale anticyclonic flow of the ring and the radial motion of the intruding water together form the spiral streamer. The observed subduction on both sides of the spiral streamer is part of the secondary cross-streamer circulation resulting from frontogenesis on the stretching streamer edges. The surface divergence of the secondary circulation pushes the side edges of the streamer away from each other, widens the warm spiral on the surface, and thus enhances its surface signal.
    Description: Authors W. G. Zhang and D. J. McGillicuddy are both supported by the National Science Foundation through Grant OCE 1657803.
    Keywords: Buoyancy ; Eddies ; Frontogenesis/frontolysis ; Mesoscale processes ; Transport ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 247-266, https://doi.org/10.1175/JPO-D-20-0098.1.
    Description: This study focuses on mechanisms of shelf valley bathymetry affecting the spread of riverine freshwater in the nearshore region. In the context of Changjiang River, a numerical model is used with different no-tide idealized configurations to simulate development of unforced river plumes over a sloping bottom, with and without a shelf valley off the estuary mouth. All simulated freshwater plumes are surface-trapped with continuously growing bulges near the estuary mouth and narrow coastal currents downstream. The simulations indicate that a shelf valley tends to compress the bulge along the direction of the valley long axis and modify the incident angle of the bulge flow impinging toward the coast, which then affects the strength of the coastal current. The bulge compression results from geostrophic adjustment and isobath-following tendency of the depth-averaged flow in the bulge region. Generally, the resulting change in the direction of the bulge impinging flow enhances down-shelf momentum advection and freshwater delivery into the coastal current. Sensitivity simulations with altered river discharges Q, Coriolis parameter, shelf bottom slope, valley geometry, and ambient stratification show that enhancement of down-shelf freshwater transport in the coastal current, ΔQc, increases with increasing valley depth within the bulge region and decreasing slope Burger number of the ambient shelf. Assuming potential vorticity conservation, a scaling formula of ΔQc/Q is developed, and it agrees well with results of the sensitivity simulations. Mechanisms of valley influences on unforced river plumes revealed here will help future studies of topographic influence on river plumes under more realistic conditions.
    Description: This work is conducted by Canbo Xiao and Weifeng (Gordon) Zhang during CX’s one-year visit at Woods Hole Oceanographic Institution (WHOI) in 2018–19. CX was supported by China Scholarship Council.
    Keywords: Continental shelf/slope ; Buoyancy ; Coastal flows ; Topographic effects ; Runoff ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1563–1581, doi:10.1175/JPO-D-13-0188.1.
    Description: This study examines the dispersal of dense water formed in an idealized coastal polynya on a sloping shelf in the absence of ambient circulation and stratification. Both numerical and laboratory experiments reveal two separate bottom pathways for the dense water: an offshore plume moving downslope into deeper ambient water and a coastal current flowing in the direction of Kelvin wave propagation. Scaling analysis shows that the velocity of the offshore plume is proportional not only to the reduced gravity, bottom slope, and inverse of the Coriolis parameter, but also to the ratio of the dense water depth to total water depth. The dense water coastal current is generated by the along-shelf baroclinic pressure gradient. Its dynamics can be separated into two stages: (i) near the source region, where viscous terms are negligible, its speed is proportional to the reduced gravity wave speed and (ii) in the far field, where bottom drag becomes important and balances the pressure gradient, the velocity is proportional to Hc[g′/(LCd)]1/2 in which Hc is the water depth at the coast, g′ the reduced gravity, Cd the quadratic bottom drag coefficient, and L the along-shelf span of the baroclinic pressure gradient. The velocity scalings are verified using numerical and laboratory sensitivity experiments. The numerical simulations suggest that only 3%–23% of the dense water enters the coastal pathway, and the percentage depends highly on the ratio of the velocities of the offshore and coastal plumes. This makes the velocity ratio potentially useful for observational studies to assess the amount of dense water formed in coastal polynyas.
    Description: WGZ was sponsored by the WHOI Arctic Research Initiative program. CC received support from the National Science Foundation Project OCE-1130008.
    Description: 2014-12-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...