ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (32)
  • Springer  (2)
  • 1
    Publication Date: 2012-07-25
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-28
    Description: Six subtropical salinity maxima (Smax) exist: two each in the Pacific, Atlantic, and Indian Ocean basins. The north Indian (NI) Smax lies in the Arabian Sea while the remaining five lie in the open ocean. The annual cycle of evaporation minus precipitation (E − P) flux over the Smax is asymmetric about the equator. Over the Northern Hemisphere Smax, the semiannual harmonic is dominant (peaking in local summer and winter), while over the Southern Hemisphere Smax, the annual harmonic is dominant (peaking in local winter). Regardless, the surface layer salinity for all six Smax reaches a maximum in local fall and minimum in local spring. This study uses a multidecade integration of an eddy-resolving ocean circulation model to compute salinity budgets for each of the six Smax. The NI Smax budget is dominated by eddy advection related to the evolution of the seasonal monsoon. The five open-ocean Smax budgets reveal a common annual cycle of vertical diffusive fluxes that peak in winter. These Smax have regions on their eastward and poleward edges in which the vertical salinity gradient is destabilizing. These destabilizing gradients, in conjunction with wintertime surface cooling, generate a gradually deepening wintertime mixed layer. The vertical salinity gradient sharpens at the base of the mixed layer, making the water column susceptible to salt finger convection and enhancing vertical diffusive salinity fluxes out of the Smax into the ocean interior. This process is also observed in Argo float profiles and is related to the formation regions of subtropical mode waters.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-29
    Description: The Southern Ocean’s Antarctic Circumpolar Current (ACC) and meridional overturning circulation (MOC) response to increasing zonal wind stress is, for the first time, analyzed in a high-resolution (0.1° ocean and 0.25° atmosphere), fully coupled global climate simulation using the Community Earth System Model. Results from a 20-yr wind perturbation experiment, where the Southern Hemisphere zonal wind stress is increased by 50% south of 30°S, show only marginal changes in the mean ACC transport through Drake Passage—an increase of 6% [136–144 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1)] in the perturbation experiment compared with the control. However, the upper and lower circulation cells of the MOC do change. The lower cell is more affected than the upper cell with a maximum increase of 64% versus 39%, respectively. Changes in the MOC are directly linked to changes in water mass transformation from shifting surface isopycnals and sea ice melt, giving rise to changes in surface buoyancy forcing. The increase in transport of the lower cell leads to upwelling of warm and salty Circumpolar Deep Water and subsequent melting of sea ice surrounding Antarctica. The MOC is commonly supposed to be the sum of two opposing components: a wind- and transient-eddy overturning cell. Here, the transient-eddy overturning is virtually unchanged and consistent with a large-scale cancellation of localized regions of both enhancement and suppression of eddy kinetic energy along the mean path of the ACC. However, decomposing the time-mean overturning into a time- and zonal-mean component and a standing-eddy component reveals partial compensation between wind-driven and standing-eddy components of the circulation.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-29
    Description: The dynamics of the lower cell of the meridional overturning circulation (MOC) in the Southern Ocean are compared in two versions of a global climate model: one with high-resolution (0.1°) ocean and sea ice and the other a lower-resolution (1.0°) counterpart. In the high-resolution version, the lower cell circulation is stronger and extends farther northward into the abyssal ocean. Using the water-mass-transformation framework, it is shown that the differences in the lower cell circulation between resolutions are explained by greater rates of surface water-mass transformation within the higher-resolution Antarctic sea ice pack and by differences in diapycnal-mixing-induced transformation in the abyssal ocean. While both surface and interior transformation processes work in tandem to sustain the lower cell in the control climate, the circulation is far more sensitive to changes in surface transformation in response to atmospheric warming from raising carbon dioxide levels. The substantial reduction in overturning is primarily attributed to reduced surface heat loss. At high resolution, the circulation slows more dramatically, with an anomaly that reaches deeper into the abyssal ocean and alters the distribution of Southern Ocean warming. The resolution dependence of associated heat uptake is particularly pronounced in the abyssal ocean (below 4000 m), where the higher-resolution version of the model warms 4.5 times more than its lower-resolution counterpart.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-13
    Description: It has traditionally been thought that midlatitude sea surface temperature (SST) variability is predominantly driven by variations in air–sea surface heat fluxes (SHFs) associated with synoptic weather variability. Here it is shown that in regions marked by the highest climatological SST gradients and SHF loss to the atmosphere, the variability in SST and SHF at monthly and longer time scales is driven by internal ocean processes, termed here “oceanic weather.” This is shown within the context of an energy balance model of coupled air–sea interaction that includes both stochastic forcing for the atmosphere and ocean. The functional form of the lagged correlation between SST and SHF allows us to discriminate between variability that is driven by atmospheric versus oceanic weather. Observations show that the lagged functional relationship of SST–SHF and SST tendency–SHF correlation is indicative of ocean-driven SST variability in the western boundary currents (WBCs) and the Antarctic Circumpolar Current (ACC). By applying spatial and temporal smoothing, thereby dampening the signature SST anomalies generated by eddy stirring, it is shown that the oceanic influence on SST variability increases with time scale but decreases with increasing spatial scale. The scale at which SST variability in the WBCs and the ACC transitions from ocean to atmosphere driven occurs at scales less than 500 km. This transition scale highlights the need to resolve mesoscale eddies in coupled climate models to adequately simulate the variability of air–sea interaction. Away from strong SST fronts the lagged functional relationships are indicative of the traditional paradigm of atmospherically driven SST variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-11-01
    Description: Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-09
    Description: A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST) variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes. The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while filtering to retain only small scales of 5° or less leads to ocean forcing of heat fluxes over most of the globe. All observational analyses examined (1° OAFlux; 0.25° J-OFURO3; 0.25° SeaFlux) show this general behavior. A standard resolution (1°) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat flux: refining the ocean grid to resolve eddies (0.1°) gives a more realistic representation of ocean forcing but the variability of both SST and of heat flux is too high compared to observational analyses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-06-01
    Description: The response of the North Atlantic thermohaline circulation to idealized climate forcing of 1% per year compound increase in CO2 is examined in three configurations of the Community Climate System Model version 3 that differ in their component model resolutions. The strength of the Atlantic overturning circulation declines at a rate of 22%–26% of the corresponding control experiment maximum overturning per century in response to the increase in CO2. The mean meridional overturning and its variability on decadal time scales in the control experiments, the rate of decrease in the transient forcing experiments, and the rate of recovery in periods of CO2 stabilization all increase with increasing component model resolution. By examining the changes in ocean surface forcing with increasing CO2 in the framework of the water-mass transformation function, we show that the decline in the overturning is driven by decreasing density of the subpolar North Atlantic due to increasing surface heat fluxes. While there is an intensification of the hydrologic cycle in response to increasing CO2, the net effect of changes in surface freshwater fluxes on those density classes that are involved in deep-water formation is to increase their density; that is, changes in surface freshwater fluxes act to maintain a stronger overturning circulation. The differences in the control experiment overturning strength and the response to increasing CO2 are well predicted by the corresponding differences in the water-mass transformation rate. Reduction of meridional heat transport and enhancement of meridional salt transport from mid- to high latitudes with increasing CO2 also act to strengthen the overturning circulation. Analysis of the trends in an ideal age tracer provides a direct measure of changes in ocean ventilation time scale in response to increasing CO2. In the subpolar North Atlantic south of the Greenland–Scotland ridge system, there is a significant increase in subsurface ages as open-ocean deep convection is diminished and ventilation switches to a predominance of overflow waters. In middle and low latitudes there is a decrease in age within and just below the thermocline in response to a decrease in the upwelling of old deep waters. However, when considering ventilation within isopycnal layers, age increases for layers in and below the thermocline due to the deepening of isopycnals in response to global warming.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-01
    Description: The emerging picture of frontal scale air–sea interaction derived from high-resolution satellite observations of surface winds and sea surface temperature (SST) provides a unique opportunity to test the fidelity of high-resolution coupled climate simulations. Initial analysis of the output of a suite of Community Climate System Model (CCSM) experiments indicates that characteristics of frontal scale ocean–atmosphere interaction, such as the positive correlation between SST and surface wind stress, are realistically captured only when the ocean component is eddy resolving. The strength of the coupling between SST and surface stress is weaker than observed, however, as has been found previously for numerical weather prediction models and other coupled climate models. The results are similar when the atmospheric component model grid resolution is doubled from 0.5° to 0.25°, an indication that shortcomings in the representation of subgrid scale atmospheric planetary boundary layer processes, rather than resolved scale processes, are responsible for the weakness of the coupling. In the coupled model solutions the response to mesoscale SST features is strongest in the atmospheric boundary layer, but there is a deeper reaching response of the atmospheric circulation apparent in free tropospheric clouds. This simulated response is shown to be consistent with satellite estimates of the relationship between mesoscale SST and all-sky albedo.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...