ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (18)
  • American Meteorological Society
  • Nature Publishing Group
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 190 (1961), S. 480-482 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] THIS article presents a summary of work on the primary structure of human haemoglobin A which was begun five years ago in the Max-Planck-Institut fur Biochemie; the results have been published during the past two years in various publications, and we wish to summarize and discuss them here. The ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 129 (1932), S. 507-508 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] IT has been found experimentally,1 that the equivalent conductivity of glasses of the system B2O3 + Na2O increases very sharply (a million-fold) with the concentration of sodium in the glass. This increase begins at a definite concentration, about ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 449 (2007), S. 795-796 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Look up 'speed boosting' on the Internet and you'll find recipes for boosting the speed of computers, modems, cars, photographic film, gas turbines and even your golf cart. But how would you increase the speed of a continent ploughing through Earth's viscous, churning mantle? Kumar et al. (page ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 221 (1969), S. 1264-1264 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Sprague-Dawley male rats, 120-180 g, were obtained from Hormone Assay (Chicago, Illinois) and housed 72 h before use. The weights of control and treated animals were within a 20 g range at the start of each experiment. Animals were killed by a blow on the head and the adrenal glands were rapidly ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-20
    Description: Mitochondria are intracellular organelles where oxidative phosphorylation is carried out to complete ATP synthesis. Mitochondria have their own genome; in metazoans, this is a small, circular molecule encoding 13 electron transport proteins, 22 tRNAs, and 2 rRNAs. In invertebrates, mitochondrial gene rearrangement is common, and it is correlated with increased substitution rates. In vertebrates, mitochondrial gene rearrangement is rare, and its relationship to substitution rate remains unexplored. Mitochondrial genes can also show spatial variation in substitution rates around the genome due to the mechanism of mtDNA replication, which produces a mutation gradient. To date, however, the strength of the mutation gradient and whether movement along the gradient in rearranged (or otherwise modified) genomes impacts genic substitution rates remain unexplored in the majority of vertebrates. Salamanders include both normal mitochondrial genomes and independently derived rearrangements and expansions, providing a rare opportunity to test the effects of large-scale changes to genome architecture on vertebrate mitochondrial gene sequence evolution. We show that: 1) rearranged/expanded genomes have higher substitution rates; 2) most genes in rearranged/expanded genomes maintain their position along the mutation gradient, substitution rates of the genes that do move are unaffected by their new position, and the gradient in salamanders is weak; and 3) genomic rearrangements/expansions occur independent of levels of selective constraint on genes. Together, our results demonstrate that large-scale changes to genome architecture impact mitochondrial gene evolution in predictable ways; however, despite these impacts, the same functional constraints act on mitochondrial protein-coding genes in both modified and normal genomes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-31
    Description: The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Together, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.
    Print ISSN: 0168-6496
    Electronic ISSN: 1574-6941
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-07-19
    Description: Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis , the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders’ high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade’s base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-29
    Description: Evolutionary changes in genome size result from the combined effects of mutation, natural selection, and genetic drift. Insertion and deletion mutations (indels) directly impact genome size by adding or removing sequences. Most species lose more DNA through small indels (i.e., ~1–30 bp) than they gain, which can result in genome reduction over time. Because this rate of DNA loss varies across species, small indel dynamics have been suggested to contribute to genome size evolution. Species with extremely large genomes provide interesting test cases for exploring the link between small indels and genome size; however, most large genomes remain relatively unexplored. Here, we examine rates of DNA loss in the tetrapods with the largest genomes—the salamanders. We used low-coverage genomic shotgun sequence data from four salamander species to examine patterns of insertion, deletion, and substitution in neutrally evolving non-long terminal repeat (LTR) retrotransposon sequences. For comparison, we estimated genome-wide DNA loss rates in non-LTR retrotransposon sequences from five other vertebrate genomes: Anolis carolinensis , Danio rerio , Gallus gallus , Homo sapiens , and Xenopus tropicalis . Our results show that salamanders have significantly lower rates of DNA loss than do other vertebrates. More specifically, salamanders experience lower numbers of deletions relative to insertions, and both deletions and insertions are skewed toward smaller sizes. On the basis of these patterns, we conclude that slow DNA loss contributes to genomic gigantism in salamanders. We also identify candidate molecular mechanisms underlying these differences and suggest that natural variation in indel dynamics provides a unique opportunity to study the basis of genome stability.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-20
    Description: Sialic acid groups of protein N -glycans are important determinants of biological activity. Exposed at the end of the glycan chain, they are potential targets for glycan remodeling. Sialyltransferases (STs; EC 2.4.99) are the enzymes that catalyze the sialic acid transfer from a CMP-activated donor on to a carbohydrate acceptor in vivo. Recombinant expression of the full-length human β-galactoside α2,6 sialyltransferase I (ST6Gal-I) was hampered and therefore variants with truncated N-termini were investigated. We report on the distinct properties of two N-terminally truncated versions of ST6Gal-I, namely 89ST6Gal-I and 108ST6Gal-I, which were successfully expressed in human embryonic kidney cells. The different properties of these enzymes result most probably from the loss of interactions from helix α1 in the 108ST6Gal-I variant, which plays a role in acceptor substrate binding. The K m for N -acetyl- d -lactosamine was 10-fold increased for 108ST6Gal-I (84 mM) as compared to 89ST6Gal-I (8.3 mM). The two enzyme variants constitute a suitable tool box for the terminal modification of N -glycans. While the enzyme 89ST6Gal-I exhibited both ST (di-sialylation) and sialidase activity on a monoclonal antibody, the enzyme 108ST6Gal-I showed only ST activity with specificity for mono-sialylation.
    Print ISSN: 0959-6658
    Electronic ISSN: 1460-2423
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-06-23
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...