ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (15)
  • International Union of Crystallography (IUCr)  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Chester : International Union of Crystallography (IUCr)
    Journal of synchrotron radiation 6 (1999), S. 953-956 
    ISSN: 1600-5775
    Quelle: Crystallography Journals Online : IUCR Backfile Archive 1948-2001
    Thema: Geologie und Paläontologie , Physik
    Notizen: Be and Al refractive lenses with long focal lengths provide a simple and efficient method of collimating synchrotron radiation. The divergence of an undulator beam at SPring-8 is reduced from 〉11 µrad full width at half maximum without the collimators to 〈3 µrad downstream of the collimators. The Be collimators have almost no losses (∼90% transmission) while the Al collimators reduce the flux by a factor of two (∼45% transmission). Data are shown at 14.4 and 18.5 keV.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2004-01-01
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2010-09-15
    Beschreibung: The spatial structure of the boreal summer South Asian monsoon in the ensemble mean of monthly retrospective forecasts by the Climate Forecast System of the National Centers for Environmental Prediction is examined. The forecast errors and predictability of the model are assessed. Systematic errors in the forecasts consist of deficient rainfall over India, excess rainfall over the Arabian Sea, and a dipole structure over the equatorial Indian Ocean. On interannual time scale during 1981–2003, two different characteristics of the monsoon are recognized—both in observation and forecasts. One feature seems to indicate that the monsoon is regionally controlled, while the other shows a strong relation with El Niño–Southern Oscillation (ENSO). The spatial structure of the regional monsoon can be characterized by the dominant rainfall between the latitudes of 15°N and 5°S in the western Indian Ocean. The maximum precipitation anomalies in the northern Arabian Sea are associated with the cyclonic circulation, while the precipitation anomalies in the equatorial western Indian Ocean accompany the easterlies over the equatorial Indian Ocean. In the ENSO-related monsoon, strong positive precipitation anomalies prevail from the equatorial eastern Indian Ocean to the western Pacific, inducing westerlies over the equatorial Indian Ocean. The spatial structure of the forecast error shows that the model is inclined to predict the ENSO-related feature more accurately than the regional feature. The predictability is found to be lower over certain areas in the northern and equatorial eastern Indian Ocean. The predictability errors in the northern Indian Ocean diminish for longer forecast leads, presumably because the impact of different initial conditions dissipates with time. On the other hand, predictability errors over the equatorial eastern Indian Ocean grow as the forecast lead increases.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-01-24
    Beschreibung: The simulation of the South Asian monsoon by a coupled ocean–atmosphere model with an embedded cloud-resolving model is analyzed on intraseasonal and interannual time scales. The daily modes of variability in the superparameterized Community Climate System Model, version 3 (SP-CCSM), are compared with those in observation, the superparameterized Community Atmospheric Model, version 3 (SP-CAM3), and the control simulation of CCSM (CT-CCSM) with conventional parameterization of convection. The CT-CCSM fails to simulate the observed intraseasonal oscillations but is able to generate the atmospheric El Niño–Southern Oscillation (ENSO) mode, although with regular biennial variability. The dominant modes of variability extracted from daily anomalies of outgoing longwave radiation, precipitation, and low-level horizontal wind in SP-CCSM consist of two intraseasonal oscillations and two seasonally persisting modes, in good agreement with observation. The most significant observed features of the intraseasonal oscillations correctly simulated by the SP-CCSM are the northward propagation of convection, precipitation, and circulation as well as the eastward and westward propagations. The observed spatial structure and the periods of the oscillations are also well captured by the SP-CCSM, although with lesser magnitude. The SP-CCSM is able to simulate the chaotic variability and spatial structure of the seasonally persisting atmospheric ENSO mode, while the evidence for the Indian Ocean dipole mode is inconclusive. The SP-CAM3 simulates two intraseasonal oscillations and the atmospheric ENSO mode. However, the intraseasonal oscillations in SP-CAM3 do not show northward propagation while their periods and spatial structures are not comparable to observation. The results of this study indicate the necessity of coupled models with sufficiently realistic cloud parameterizations.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2009-09-01
    Beschreibung: The relation between the intraseasonal modes of the South Asian monsoon and the sea surface temperature (SST) in the tropical oceans on a daily time scale has been investigated. Long lead–lag relations of the daily SST anomalies with the dominant monsoon modes obtained from a multichannel singular spectrum analysis (MSSA) of the daily outgoing longwave radiation (OLR) over the South Asian monsoon region are presented. The dominant MSSA monsoon modes, consisting of two oscillatory modes (at 45- and 28-day time scales) and two seasonally persistent modes, are found to have varying degrees of lead–lag relation with the SSTs in the Indian and Pacific Oceans. While the 45-day oscillatory mode has weak correlations with the SSTs in the Pacific and Indian Ocean, it also reveals a possible 45-day oscillation in the SST in the northwestern Pacific and northern Indian Ocean. The 28-day oscillatory mode has negligible correlation with the tropical SST. One of the persistent monsoon modes has a very strong relation with the El Niño–Southern Oscillation (ENSO)–related SST in the Pacific with correlation above 0.8 for a long lead–lag time range. The other persistent monsoon mode has moderate lead–lag correlation with the Indian Ocean dipole (IOD) SST as well as with the ENSO-like SST in the Pacific. The strong relation of the persistent modes, which mainly determine the seasonal mean monsoon, when the SST leads, provides hope for long-term prediction of the seasonal mean monsoon. The strong relation between the monsoon and the SST, when the monsoon leads, points toward the strong influence of the monsoon on the variability of ENSO and IOD.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2011-06-15
    Beschreibung: Three regionally coupled experiments are conducted to examine the role of Indian and Pacific sea surface temperature (SST) in Indian summer monsoon intraseasonal variability using the National Centers for Environmental Prediction’s Climate Forecast System, a coupled general circulation model. Regional coupling is employed by prescribing daily mean or climatological SST in either the Indian or the Pacific basin while allowing full coupling elsewhere. The results are compared with a fully coupled control simulation. The intraseasonal modes are isolated by applying multichannel singular spectrum analysis on the daily precipitation anomalies. It is found that the amplitude of the northeastward-propagating mode is weaker when the air–sea interaction is suppressed in the Indian Ocean. The intraseasonal mode is not resolved clearly when the Indian Ocean SST is reduced to daily climatology. Intraseasonal composites of low-level zonal wind, latent heat flux, downward shortwave radiation, and SST provide a picture consistent with the proposed mechanisms of air–sea interaction for the northward propagation. The Pacific SST variability does not seem to be critical for the existence of this mode. The northwestward-propagating mode is obtained in the cases where the Indian Ocean was prescribed by daily mean or daily climatological SST. Intraseasonal SST composites corresponding to this mode are weak.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2010-08-15
    Beschreibung: The tropical disturbances formed in the Bay of Bengal and the Arabian Sea and over land points in central India, known as low pressure systems (LPSs), are shown to contribute significantly to the seasonal monsoon rainfall over India. Analyses of daily rainfall over India and statistics of the LPSs for the period of 1901–2003 show that the rainfall pattern when the LPSs are present captures the most dominant daily rainfall pattern that represents the active monsoon phase. The rainfall pattern when the LPSs are absent is similar to the pattern representing the break monsoon phase. The location, number, and duration of the LPSs are found to be closely related to the phases and propagation of the dominant intraseasonal modes of the Indian rainfall. The LPSs are also associated with the strengthening of the monsoon trough and low-level monsoon winds. The number of LPSs and their total duration and the corresponding rainfall during July and August exceed those in June and September. The LPS tracks reach up to northwest India during flood years, whereas they are confined to central India during drought years. However, the contribution of rainfall during the LPSs to the total seasonal rainfall is same during flood or drought years. Although the LPSs seem to play an important role in the monsoon rainfall, they alone may not determine the interannual variability of the seasonal mean monsoon rainfall.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-03-13
    Beschreibung: The space–time structure of the leading monsoon intraseasonal oscillation (MISO) in three-dimensional diabatic heating is studied. Using the ERA-Interim data of the European Centre for Medium-Range Weather Forecasts, the diabatic heating data were constructed by the residual method of the thermodynamic equation. The MISO was extracted by applying multichannel singular spectrum analysis on the daily anomalies of three-dimensional diabatic heating over the South Asian monsoon region for the period 1979–2011.The diabatic heating MISO has a period of 45 days, and exhibits eastward propagation in the equatorial Indian and Pacific Oceans and northward propagation over the entire monsoon region. The horizontal structure shows a long tilted band of heating anomalies propagating northeastward. The period, horizontal pattern, and propagation properties of the diabatic heating MISO are similar to those found in precipitation, outgoing longwave radiation, and circulation in earlier studies. The vertical structure of the diabatic heating MISO indicates deep columns, with maximum values at about 450 hPa, propagating northeastward. The vertical structure of the heating anomalies has good correspondence with that of the moisture anomalies but with a phase difference. The moisture anomalies lead the heating anomalies and may provide a preconditioning process for the propagation mechanism. The temperature anomalies also show oscillatory behavior corresponding to the diabatic heating MISO but the phase difference between the two varies from region to region.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2002-10-01
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2007-01-01
    Beschreibung: The space–time structure of the active and break periods of the Indian monsoon has been studied using 70-yr-long high-resolution gridded daily rainfall data over India. The analysis of lagged composites of rainfall anomalies based on an objective categorization of active and break phases shows that the active (break) cycle, with an average life of 16 days, starts with positive (negative) rainfall anomalies over the Western Ghats and eastern part of central India and intensifies and expands to a region covering central India and parts of north India during the peak phase, while negative (positive) anomalies cover the sub-Himalayan region and southeast India. During the final stage of the active (break) period, the positive (negative) rainfall anomalies move toward the foothills of the Himalayas while peninsular India is covered with opposite sign anomalies. The number of days on which lows and depressions are present in the region during active and break periods is consistent with the rainfall analysis. The number of depressions during the active phase is about 7 times that during the break phase. Using multichannel singular spectrum analysis of the daily rainfall anomalies, the seasonal monsoon rainfall is found to consist of two dominant intraseasonal oscillations with periods of 45 and 20 days and three seasonally persisting components. The 45- and 20-day oscillations are manifestations of the active and break periods but contribute very little to the seasonal mean rainfall. The seasonally persisting components with anomalies of the same sign, and covering all of India, have a very high interannual correlation with the total seasonal mean rainfall. These results support a conceptual model of the interannual variability of the monsoon rainfall consisting of seasonal mean components and a statistical average of the intraseasonal variations. The success in the prediction of seasonal mean rainfall depends on the relative strengths of the seasonally persisting components and intraseasonal oscillations.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...