ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 30 (1995), S. 1765-1767 
    ISSN: 1076-5174
    Schlagwort(e): Chemistry ; Analytical Chemistry and Spectroscopy
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie , Physik
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 0935-6304
    Schlagwort(e): Deproteinization ; polychlorobiphenyls ; polychlorodibenzo-p-dioxins ; restricted-access reversed-phase packings ; sample preparation ; Chemistry ; Analytical Chemistry and Spectroscopy
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: ---No abstract
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-05-01
    Beschreibung: In recent years, the idea of geoengineering, artificially modifying the climate to reduce global temperatures, has received increasing attention because of the lack of progress in reducing global greenhouse gas emissions. Stratospheric sulfate injection (SSI) is a geoengineering method proposed to reduce planetary warming by reflecting a proportion of solar radiation back into space that would otherwise warm the surface and lower atmosphere. The authors analyze results from the Met Office Hadley Centre Global Environment Model, version 2, Carbon Cycle Stratosphere (HadGEM2-CCS) climate model with stratospheric emissions of 10 Tg yr−1 of SO2, designed to offset global temperature rise by around 1°C. A reduction in concentrating solar power output of 5.9% on average over land is shown under SSI relative to a baseline future climate change scenario (RCP4.5) caused by a decrease in direct radiation. Solar photovoltaic energy is generally less affected as it can use diffuse radiation, which increases under SSI, at the expense of direct radiation. The results from HadGEM2-CCS are compared with the Goddard Earth Observing System Chemistry–Climate Model (GEOSCCM) from the Geoengineering Model Intercomparison Project (GeoMIP), with 5 Tg yr−1 emission of SO2. In many regions, the differences predicted in solar energy output between the SSI and RCP4.5 simulations are robust, as the sign of the changes for both HadGEM2-CCS and GEOSCCM agree. Furthermore, the sign of the total and direct annual mean radiation changes evaluated by HadGEM2-CCS agrees with the sign of the multimodel mean changes of an ensemble of GeoMIP models over the majority of the world.
    Print ISSN: 1558-8424
    Digitale ISSN: 1558-8432
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-11-06
    Beschreibung: The SOCRATES offline radiative transfer code is used to investigate the magnitude and structure of the instantaneous radiative forcing kernels (IRFKs) for five major greenhouse gases (GHGs; CO2, CH4, N2O, CFC-11, and O3). All gases produce IRFKs that peak in the tropical upper troposphere. In addition to differences in spectroscopic intensities and the position of absorption features relative to the peak of the Planck function for Earth’s temperature, the variation in current background concentration of gases substantially affects the IRFK magnitudes. When the background concentration of CO2 is reduced from parts per million to parts per trillion levels, the peak magnitude of the IRFK increases by a factor of 642. When all gases are set to parts per trillion concentrations in the troposphere, the peak IRFK magnitudes are 1.0, 3.0, 3.1, 58 and 75 Wm−2 ppmv−1 100 hPa−1 for CH4, CO2, N2O, O3 and CFC-11, respectively. The altitude of the IRFK maximum also differs, with the maximum for CFC-11 and water vapour occurring above 100 hPa while the other gases peak near 150-200 hPa. Overlap with water vapour absorption decreases the magnitude of the IRFKs for all the GHGs, particularly in the low-to-mid troposphere, but it does not strongly affect the peak IRFK altitude. Cloud radiative effects reduce the magnitude of the IRFK for CO2 by around 10-20% in the upper troposphere. The use of IRFKs to estimate IRF is found to be accurate for small amplitude perturbations, but becomes inaccurate for large amplitude changes (e.g. a doubling) for gases with a higher atmospheric optical depth.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-11-30
    Beschreibung: Past studies have suggested that regional trends in anthropogenic aerosols can influence the Pacific Decadal Oscillation (PDO) through modulation of the Aleutian Low. However, the robustness of this connection is debated. This study analyses changes to the Aleutian Low in an ensemble of climate models forced with large, idealised global and regional black carbon (BC) and sulphate aerosol perturbations. To isolate the role of ocean feedbacks, the experiments are performed with an interactive ocean and with prescribed sea surface temperatures. The results show a robust weakening of the Aleutian Low forced by a global 10-fold increase in BC in both experiment configurations. A linearised steady-state primitive equation model is forced with diabatic heating anomalies to investigate the mechanisms through which heating from BC emissions influences the Aleutian Low. The heating from BC absorption over India and east Asia generates Rossby wave trains that propagate into the North Pacific sector, forming an upper tropospheric ridge. Sources of BC outside of east Asia enhance the weakening of the Aleutian Low. The responses to a global 5-fold and regional 10-fold increase in sulphate aerosols over Asia show poor consistency across climate models, with a multi-model mean response that does not project strongly onto the Aleutian Low. These findings for a large, idealised step increase in regional sulphate aerosol differ from previous studies that suggest the transient increase in sulphate aerosols over Asia during the early 21st century weakened the Aleutian Low and induced a transition to a negative PDO phase.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2023-01-04
    Beschreibung: The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2024-05-17
    Beschreibung: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...