ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (2)
  • 2005-2009  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2007-04-01
    Description: Drought is the most economically expensive recurring natural disaster to strike North America in modern times. Recently available gridded drought reconstructions have been developed for most of North America from a network of drought-sensitive tree-ring chronologies, many of which span the last 1000 yr. These reconstructions enable the authors to put the famous droughts of the instrumental record (i.e., the 1930s Dust Bowl and the 1950s Southwest droughts) into the context of 1000 yr of natural drought variability on the continent. We can now, with this remarkable new record, examine the severity, persistence, spatial signatures, and frequencies of drought variability over the past milllennium, and how these have changed with time. The gridded drought reconstructions reveal the existence of successive “megadroughts,” unprecedented in persistence (20–40 yr), yet similar in year-to-year severity and spatial distribution to the major droughts experienced in today’s North America. These megadroughts occurred during a 400-yr-long period in the early to middle second millennium a.d., with a climate varying as today’s, but around a drier mean. The implication is that the mechanism forcing persistent drought in the West and the Plains in the instrumental era is analagous to that underlying the megadroughts of the medieval period. The leading spatial mode of drought variability in the recontructions resembles the North American ENSO pattern: widespread drought across the United States, centered on the Southwest, with a hint of the opposite phase in the Pacific Northwest. Recently, climate models forced by the observed history of tropical Pacific SSTs have been able to successfully simulate all of the major North American droughts of the last 150 yr. In each case, cool “La Niña–like” conditions in the tropical Pacific are consistent with North American drought. With ENSO showing a pronounced signal in the gridded drought recontructions of the last millennium, both in terms of its link to the leading spatial mode, and the leading time scales of drought variability (revealed by multitaper spectral analysis and wavelet analysis), it is postulated that, as for the modern day, the medieval megadroughts were forced by protracted La Niña–like tropical Pacific SSTs. Further evidence for this comes from the global hydroclimatic “footprint” of the medieval era revealed by existing paleoclimatic archives from the tropical Pacific and ENSO-sensitive tropical and extratropical land regions. In general, this global pattern matches that observed for modern-day persistent North American drought, whereby a La Niña–like tropical Pacific is accompanied by hemispheric, and in the midlatitudes, zonal, symmetry of hydroclimatic anomalies.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-01
    Description: The controversial claim that El Niño events might be partially caused by radiative forcing due to volcanic aerosols is reassessed. Building on the work of Mann et al., estimates of volcanic forcing over the past millennium and a climate model of intermediate complexity are used to draw a diagram of El Niño likelihood as a function of the intensity of volcanic forcing. It is shown that in the context of this model, only eruptions larger than that of Mt. Pinatubo (1991, peak dimming of about 3.7 W m−2) can shift the likelihood and amplitude of an El Niño event above the level of the model’s internal variability. Explosive volcanism cannot be said to trigger El Niño events per se, but it is found to raise their likelihood by 50% on average, also favoring higher amplitudes. This reconciles, on one hand, the demonstration by Adams et al. of a statistical relationship between explosive volcanism and El Niño and, on the other hand, the ability to predict El Niño events of the last 148 yr without knowledge of volcanic forcing. The authors then focus on the strongest eruption of the millennium (A.D. 1258), and show that it is likely to have favored the occurrence of a moderate-to-strong El Niño event in the midst of prevailing La Niña–like conditions induced by increased solar activity during the well-documented Medieval Climate Anomaly. Compiling paleoclimate data from a wide array of sources, a number of important hydroclimatic consequences for neighboring areas is documented. The authors propose, in particular, that the event briefly interrupted a solar-induced megadrought in the southwestern United States. Most of the time, however, volcanic eruptions are found to be too small to significantly affect ENSO statistics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...