ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-05-01
    Description: Convective rainfall often shows a clear diurnal cycle. The nighttime peak of convective activity prevails in various regions near the world's mountains. The influence of the water vapor and convective instability upon nocturnal precipitation is investigated using a numerical model and observed data. Recent developments in GPS meteorology allow the estimation of precipitable water vapor (PWV) with a high temporal resolution. A dense network has been established in Japan. The GPS analysis in August 2000 provides the following results: In the early evening, a high-GPS-PWV region forms over mountainous areas because of the convergence of low-level moisture, which gradually propagates toward the adjacent plain before midnight. A region of convection propagates simultaneously eastward into the plain. The precipitating frequency correlates fairly well with the GPS-PWV and attains a maximum value at night over the plain. The model also provides similar characteristics in the diurnal cycles of rainfall and high PWV. Abundant moisture accumulates over the mountainous areas in the afternoon and then advects continuously toward the plain by the ambient wind. The specific humidity greatly increases at about the 800-hPa level over the plain at night, and the PWV reaches its nocturnal maximum. The increase in the specific humidity causes an increase of equivalent potential temperature at about the 800-hPa level; as a result, the convective instability index becomes more unstable over the plain at night. These findings are consistent with the diurnal cycle of the observed precipitating frequency.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-06-01
    Description: The linear stability of a double-diffusively stratified, inflectional shear flow is investigated. Double-diffusive stratification has little effect on shear instability except when the density ratio Rρ is close to unity. Double-diffusive instabilities have significant growth rates and can represent the fastest-growing mode even in the presence of inflectionally unstable shear with a low Richardson number. In the linear regime, background shear has no effect on double-diffusive modes except to select the orientation of the wave vector. The converse is not true: double-diffusive modes modify the mean shear via momentum fluxes. The momentum flux driven by salt sheets is parameterized in terms of a Schmidt number (ratio of eddy viscosity to saline diffusivity) Scs. In the oceanic parameter regime, Scs is less than unity and can be approximated as Scs = 0.08 ln[Rρ/(Rρ − 1)]. Enhanced molecular dissipation by unstable motions is quantified in terms of the dissipation ratio Γ, and the results are compared with observations. Corresponding results are given for diffusive convection in an inflectional shear flow, though linear theory is expected to give a less accurate description of this mechanism.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-01
    Description: The roles of the Tibetan Plateau (TP) upon the transition of precipitation in the south Asian summer monsoon are investigated using a simplified regional climate model. Before the onset of the south Asian monsoon, descending flow in the midtroposphere, which can be considered as a suppressor against precipitation, prevails over northern India as revealed by the NCEP–NCAR reanalysis data. The descending motion gradually weakens and retreats from this region before July, consistent with the northwestward migration of the monsoon rainfall. To examine a hypothesis that the dynamical and thermal effects of TP cause the midtropospheric subsidence and its seasonal variation, a series of numerical experiments are conducted using a simplified regional climate model. The mechanical effect of the TP generates robust descending flow over northern India during winter and spring when the zonal westerly flow is relatively strong, but the effect becomes weaker after April as the westerly flow tends to be weaker. The thermal effect of the TP, contrastingly, enhances the descending flow over north India in the premonsoonal season. The descending flow enhanced by the thermal effect of the TP has a seasonal cycle because the global-scale upper-level westerly changes the energy propagation of the thermal forcing response. The subsidence formed by the mechanical and thermal effects of the TP disappears over northern India after the subtropical westerly shifts north of the plateau, the seasonal change of which is in good agreement with that in the reanalysis data. The retreat of the descending flow can be regarded as the withdrawal of the premonsoon season and the commencement of the south Asian monsoon. After that, the deep convection, indicating the onset of the Indian summer monsoon, is able to develop over north India in relation to the ocean–atmosphere and land–atmosphere interaction processes. Northwest India is known to be the latest region of summer monsoon onset in south Asia. Thus, the thermal and mechanical forcing of the TP has great impact on the transition of the Indian monsoon rainfall by changing the midtropospheric circulation.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-04-01
    Description: The diurnal variations of convective activity and precipitable water were investigated using a C-band airport radar and GPS receivers around Ulaanbaator (UB), Mongolia; this location was considered as an example of an arid region. The convective activity exhibited a pronounced diurnal cycle; it increased rapidly at 1100 local solar time (LST; 0300 UTC), reached the maximum at 1400 LST, and almost disappeared after 1900 LST. On the other hand, no diurnal variation of precipitable water could be observed, which implied that there was no considerable evapotranspiration, and the diurnal variation of the convective activity was irrelevant to the variation of water vapor. The reason why the deep convection could not develop at night is discussed using numerical modeling from the viewpoint of soil moisture. In the moist soil conditions assumed for humid simulations, an increase in the water vapor in the boundary layer due to evapotranspiration led to a potentially unstable condition that was sustained until night. Deep convection was formed at the southern foot of mountains where topographical convergence was expected. On the other hand, in the dry soil conditions assumed for the arid simulations, deep convection did not occur during nighttime even though topographical convergence was expected over the southern foot of the mountains. These features of dry soil conditions were consistent with the results from radar observations around UB. In other words, since the soil around UB is too dry in practice to sustain an unstable condition until night, the deep convection had to decay by night and could not be initiated at night.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-07-01
    Description: Precipitation measurements from the Tropical Rainfall Measuring Mission satellite indicate that annual rainfall over the sea in the vicinity of western Sumatra Island is among the highest on the earth, and most of this rainfall occurs during nighttime. Surface meteorological observations at Tabing on the western coast of the island show frequent occurrences of sudden offshore winds accompanied by an abrupt drop in surface temperatures in the late afternoon and evening. Model simulations for a 1-month period during the rainy season of the region successfully simulate the satellite-observed regional distribution and diurnal variation of rainfall. The simulation results show that convection develops across a wide area over the mountainous areas of the island at similar times in the afternoon with the development of thermally induced local circulations. At these times of the day, convection over the sea along the western coast of the island is suppressed by the thermally and topographically induced diurnal changes in the boundary layer flow. When convection over the mountains of the island dissipates in the late afternoon and evening, a zone of cold surface outflow along the western coast results from the mountain convection breaking out to the sea. Meanwhile, the convective inhibition offshore is reduced in the evening, and the offshore flow causes regular occurrences of convection over the sea near the coast. The triggered convective systems propagate offshore and westward in multicell cluster storms during nighttime, bringing heavy rainfall over the sea off the western coast of the island. Sensitivity experiments with a flat-topography model demonstrate that the frequent occurrence of offshore flow in the late afternoon and evening on the western coast is caused by the mountainous topography of the island and its induced afternoon convection. The mountains on the island and the resultant thermally and convectively induced local circulations can play an important role in the formation of nocturnal abundant rainfall over the sea west of Sumatra Island.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-09-01
    Description: The authors constructed the framework for a preliminary assessment of climate change impact on the rice insurance payout in Japan. The framework consisted of various models ranging from climate projection downscaling, rice yield estimation, yield loss assessment, and rice insurance payout estimation. In this study, a simulation was conducted based on the dynamically downscaled regional climate projection with a lateral boundary condition given by the global climate projection of the Meteorological Research Institute Coupled General Circulation Model, version 2 (MRI CGCM2), under the A2 scenario of the Special Report on Emission Scenarios (SRES). Results indicated that rice yield in the 2070s will decrease slightly in central and western Japan and increase in northern Japan. The increase in yield was derived from a significant reduction in yield loss caused by cool-summer damage; on the other hand, the decrease in yield was caused by the increase in yield loss caused by heat stress and the shortening of the growth period induced by the temperature rise. The increase in the atmospheric CO2 concentration resulted in an increase in paddy rice biomass because of the fertilization effect; however, the increase in biomass was not enhanced much as a result of shortening of the growth period if early planting was not considered as an adaptation practice. Reflecting such changes in yield, the rice insurance payout significantly decreased in northern Japan but only slightly increased in the areas of central and western Japan. In total, the 9-yr mean payout in Japan in the 2070s decreased to 120.2 billion yen; the value corresponded to 87% of the payout averaged over 9 yr in the 1990s (1991–99).
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...