ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
  • 2015-2019  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2017-11-01
    Description: Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-01
    Description: Of all the major coastal upwelling systems in the world’s oceans, the Benguela, located off southwest Africa, is the one that climate models find hardest to simulate well. This paper investigates the sensitivity of upwelling processes, and of sea surface temperature (SST), in this region to resolution of the climate model and to the offshore wind structure. The Community Climate System Model (version 4) is used here, together with the Regional Ocean Modeling System. The main result is that a realistic wind stress curl at the eastern boundary, and a high-resolution ocean model, are required to well simulate the Benguela upwelling system. When the wind stress curl is too broad (as with a 1° atmosphere model or coarser), a Sverdrup balance prevails at the eastern boundary, implying southward ocean transport extending as far as 30°S and warm advection. Higher atmosphere resolution, up to 0.5°, does bring the atmospheric jet closer to the coast, but there can be too strong a wind stress curl. The most realistic representation of the upwelling system is found by adjusting the 0.5° atmosphere model wind structure near the coast toward observations, while using an eddy-resolving ocean model. A similar adjustment applied to a 1° ocean model did not show such improvement. Finally, the remote equatorial Atlantic response to restoring SST in a broad region offshore of Benguela is substantial; however, there is not a large response to correcting SST in the narrow coastal upwelling zone alone.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-01
    Description: Observations from the Southern Ocean Flux Station provide a wide range of wind, buoyancy, and wave (Stokes) forcing for large-eddy simulation (LES) of deep Southern Ocean boundary layers. Almost everywhere there is a nonzero angle Ω between the shear and the stress vectors. Also, with unstable forcing there is usually a depth where there is stable stratification, but zero buoyancy flux and often a number of depths above where there is positive flux, but neutral stratification. These features allow nonlocal transports of buoyancy and of momentum to be diagnosed, using either the Eulerian or Lagrangian shear. The resulting profiles of nonlocal diffusivity and viscosity are quite similar when scaled according to Monin–Obukhov similarity theory in the surface layer, provided the Eulerian shear is used. Therefore, a composite shape function is constructed that may be generally applicable. In contrast, the deeper boundary layer appears to be too decoupled from the Stokes component of the Lagrangian shear. The nonlocal transports can be dominant. The diagnosed across-shear momentum flux is entirely nonlocal and is highly negatively correlated with the across-shear component of the wind stress, just as nonlocal and surface buoyancy fluxes are related. Furthermore, in the convective limit the scaling coefficients become essentially identical, with some consistency with atmospheric experience. The nonlocal contribution to the along-shear momentum flux is proportional to (1 − cosΩ) and is always countergradient, but is unrelated to the aligned wind stress component.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-01
    Description: Monin–Obukhov similarity theory is applied to the surface layer of large-eddy simulations (LES) of deep Southern Ocean boundary layers. Observations from the Southern Ocean Flux Station provide a wide range of wind, buoyancy, and wave (Stokes drift) forcing. Two No-Stokes LES are used to determine the extent of the ocean surface layer and to adapt the nondimensional momentum and buoyancy gradients, as functions of the stability parameter. Stokes-forced LES are used to modify this parameter for wave effects, then to formulate dependencies of Stokes similarity functions on a Stokes parameter ξ. To account for wind-wave misalignment, the dimensional analysis is extended with two independent variables, namely, the production of turbulent kinetic energy in the surface layer due to Stokes shear and the total production, so that their ratio gives ξ. Stokes forcing is shown to reduce vertical shear more than stratification, and to enhance viscosity and diffusivity by factors up to 5.8 and 4.0, respectively, such that the Prandtl number can exceed unity. A practical parameterization is developed for ξ in terms of the meteorological forcing plus a Stokes drift profile, so that the Stokes and stability similarity functions can be combined to give turbulent velocity scales. These scales for both viscosity and diffusivity are evaluated against the LES, and the correlations are nearly 0.97. The benefit of calculating Stokes drift profiles from directional wave spectra is demonstrated by similarly evaluating three alternatives.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 2429-2454, doi:10.1175/BAMS-D-16-0030.1.
    Description: Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.
    Description: We are grateful to U.S. CLIVAR for their leadership in instigating and facilitating the Climate Process Team program. We are indebted to NSF and NOAA for sponsoring the CPT series.
    Description: 2018-06-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...