ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-10-13
    Description: Five, daily, gridded, Northern Hemisphere snow water equivalent (SWE) datasets are analyzed over the 1981–2010 period in order to quantify the spatial and temporal consistency of satellite retrievals, land surface assimilation systems, physical snow models, and reanalyses. While the climatologies of total Northern Hemisphere snow water mass (SWM) vary among the datasets by as much as 50%, their interannual variability and daily anomalies are comparable, showing moderate to good temporal correlations (between 0.60 and 0.85) on both interannual and intraseasonal time scales. Wintertime trends of total Northern Hemisphere SWM are consistently negative over the 1981–2010 period among the five datasets but vary in strength by a factor of 2–3. Examining spatial patterns of SWE indicates that the datasets are most consistent with one another over boreal forest regions compared to Arctic and alpine regions. Additionally, the datasets derived using relatively recent reanalyses are strongly correlated with one another and show better correlations with the satellite product [the European Space Agency (ESA)’s Global Snow Monitoring for Climate Research (GlobSnow)] than do those using older reanalyses. Finally, a comparison of eight reanalysis datasets over the 2001–10 period shows that land surface model differences control the majority of spread in the climatological value of SWM, while meteorological forcing differences control the majority of the spread in temporal correlations of SWM anomalies.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-27
    Description: Trends in Canada’s climate are analyzed using recently updated data to provide a comprehensive view of climate variability and long-term changes over the period of instrumental record. Trends in surface air temperature, precipitation, snow cover, and streamflow indices are examined along with the potential impact of low-frequency variability related to large-scale atmospheric and oceanic oscillations on these trends. The results show that temperature has increased significantly in most regions of Canada over the period 1948–2012, with the largest warming occurring in winter and spring. Precipitation has also increased, especially in the north. Changes in other climate and hydroclimatic variables, including a decrease in the amount of precipitation falling as snow in the south, fewer days with snow cover, an earlier start of the spring high-flow season, and an increase in April streamflow, are consistent with the observed warming and precipitation trends. For the period 1900–2012, there are sufficient temperature and precipitation data for trend analysis for southern Canada (south of 60°N) only. During this period, temperature has increased significantly across the region, precipitation has increased, and the amount of precipitation falling as snow has decreased in many areas south of 55°N. The results also show that modes of low-frequency variability modulate the spatial distribution and strength of the trends; however, they alone cannot explain the observed long-term trends in these climate variables.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...