ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (7)
  • 2015-2019  (4)
  • 2010-2014  (3)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2018-05-01
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-09-11
    Beschreibung: Forecasting monsoon rainfall using dynamical climate models has met with little success, partly due to models’ inability to represent the monsoon climatological state accurately. In this article the nature and dynamical causes of their biases are investigated. The approach is to analyze errors in multimodel-mean climatological fields determined from CMIP5, and to carry out sensitivity experiments using a coupled model [the Coupled Model for the Earth Simulator (CFES)] that does represent the monsoon realistically. Precipitation errors in the CMIP5 models persist throughout the annual cycle, with positive (negative) errors occurring over the near-equatorial western Indian Ocean (South Asia). Model errors indicate that an easterly wind stress bias Δτ along the equator begins during April–May and peaks during November; the severity of the Δτ is that the Wyrtki jets, eastward-flowing equatorial currents during the intermonsoon seasons (April–May and October–November), are almost eliminated. An erroneous east–west SST gradient (warm west and cold east) develops in June. The structure of the model errors indicates that they arise from Bjerknes feedback in the equatorial Indian Ocean (EIO). Vertically integrated moisture and moist static energy budgets confirm that warm SST bias in the western EIO anchors moist processes that cause the positive precipitation bias there. In CFES sensitivity experiments in which Δτ or warm SST bias over the western EIO is artificially introduced, errors in the EIO are similar to those in the CMIP5 models; moreover, precipitation over South Asia is reduced. An overall implication of these results is that South Asian rainfall errors in CMIP5 models are linked to errors of coupled processes in the western EIO, and in coupled models correct representation of EIO coupled processes (Bjerknes feedback) is a necessary condition for realistic monsoon simulation.
    Print ISSN: 0894-8755
    Digitale ISSN: 1520-0442
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-03-01
    Beschreibung: The Leeuwin Current System (LCS) along the coast of Western Australia consists of the poleward-flowing Leeuwin Current (LC), the equatorward-flowing Leeuwin Undercurrent (LUC), and neighboring flows in the south Indian Ocean (SIO). Using geostrophic currents obtained from a highly resolved (⅛°) hydrographic climatology [CSIRO Atlas of Regional Seas (CARS)], this study describes the spatial structure and annual variability of the LC, LUC, and SIO zonal currents, estimates their transports, and identifies linkages among them. In CARS, the LC is supplied partly by water from the tropics (an annual mean of 0.3 Sv; 1 Sv ≡ 106 m3 s−1) but mostly by shallow (200 m) eastward flows in the SIO (4.7 Sv), and it loses water by downwelling across the bottom of this layer (3.4 Sv). The downwelling is so strong that, despite the large SIO inflow, the horizontal transport of the LC does not much increase to the south (from 0.3 Sv at 22°S to 1.5 Sv at 34°S). This LC transport is significantly smaller than previously reported. The LUC is supplied by water from south of Australia (0.2 Sv), by eastward inflow from the SIO south of 28°S (1.6 Sv), and by the downwelling from the LC (1.6 Sv) and in response strengthens northward, reaching a maximum near 28°S (3.4 Sv). North of 28°S it loses water by outflow into subsurface westward flow (−3.6 Sv between 28° and 22°S) and despite an additional downwelling from the LC (1.9 Sv), it decreases to the north (1.7 Sv at 22°S). The seasonality of the LUC is described for the first time.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-10-01
    Beschreibung: Two numerical ocean models are used to study the baroclinic response to forcing by localized wind stress curl (i.e., a wind-forced β plume, which is a circulation cell developing to the west of the source region and composed of a set of zonal jets) with implications for the Hawaiian Lee Countercurrent (HLCC): an idealized primitive equation model [Regional Ocean Modeling System (ROMS)], and a global, eddy-resolving, general circulation model [Ocean General Circulation Model for the Earth Simulator (OFES)]. In addition, theoretical ideas inferred from a linear continuously stratified model are used to interpret results. In ROMS, vertical mixing preferentially damps higher-order vertical modes. The damping thickens the plume to the west of the forcing region, weakening the near-surface zonal jets and generating deeper zonal currents. The zonal damping scale increases monotonically with the meridional forcing scale, indicating a dominant role of vertical viscosity over diffusion, a consequence of the small forcing scale. In the OFES run forced by NCEP reanalysis winds, the HLCC has a vertical structure consistent with that of idealized β plumes simulated by ROMS, once the contribution of the North Equatorial Current (NEC) has been removed. Without this filtering, a deep HLCC branch appears artificially separated from the surface branch by the large-scale intermediate-depth NEC. The surface HLCC in two different OFES runs exhibits sensitivity to the meridional wind curl scale that agrees with the dynamics of a β plume in the presence of vertical viscosity. The existence of a deep HLCC extension is also suggested by velocities of Argo floats.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2010-05-01
    Beschreibung: A complex pattern of zonal currents below the thermocline has been observed in the equatorial Pacific and Atlantic Oceans. The currents have typical speeds from 10 to 15 cm s−1 and extend as deep as 2500 m. Their structure can be divided into two overlapping parts: the equatorial deep jets (EDJs), centered on the equator and alternating in the vertical with a wavelength of several hundred meters, and the Equatorial Intermediate Current system (EICS), composed of currents with large vertical scale and alternating with latitude over several degrees on either side of the equator. The strongest EICS current is a westward flow on the equator flanked by eastward currents at 2°N and 2°S. In the present study, the authors use idealized numerical simulations and analytical solutions to demonstrate that the EICS currents within 2.5° from the equator could result from the self-advection with dissipation of a downward-propagating beam of monthly periodic Yanai (Rossby gravity) waves. The zonally restricted beam is generated in the eastern part of the basin by instabilities of the swift near-surface equatorial currents. For a weak Yanai wave amplitude and no dissipation, mean Eulerian currents resembling the three strongest EICS currents are obtained but only within the beam; in this case, the Eulerian flow is balanced by the wave-induced Stokes drift, yielding a zero-mean Lagrangian flow, and the water parcels conserve their potential vorticity (PV) and are stationary over a wave cycle. For larger amplitudes, the Yanai waves break, losing their energy to small vertical scales where it is dissipated. This dissipation changes the mean (wave averaged) PV of a water parcel within the beam, allowing the parcel to have a persistent equatorward drift across PV contours. This can be viewed as a wave-induced Sverdrup transport; by continuity and by virtue of the westward group velocity of long Rossby waves, this Lagrangian-mean meridional flow requires a Lagrangian-mean zonal flow within and to the west of the beam, with a meridional structure consistent with the three strongest EICS currents. This mechanism of EICS formation is active in some ocean general circulation models; its importance in the ocean remains to be evaluated.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2011-06-01
    Beschreibung: Previous studies have investigated how second-baroclinic-mode (n = 2) Kelvin and Rossby waves in the equatorial Indian Ocean (IO) interact to form basin resonances at the semiannual (180 day) and 90-day periods. This paper examines unresolved issues about these resonances, including the reason the 90-day resonance is concentrated in the eastern ocean, the time scale for their establishment, and the impact of complex basin geometry. A hierarchy of ocean models is used: an idealized one-dimensional (1D) model, a linear continuously stratified ocean model (LCSM), and an ocean general circulation model (OGCM) forced by Quick Scatterometer (QuikSCAT) wind during 2000–08. Results indicate that the eastern-basin concentration of the 90-day resonance happens because the westward-propagating Rossby wave is slower, and thus is damped more than the eastward-propagating Kelvin wave. Results also indicate that superposition with other baroclinic modes further enhances the eastern maximum and weakens sea level variability near the western boundary. Without resonance, although there is still significant power at 90 and 180 days, solutions have no spectral peaks at these periods. The key time scale for the establishment of all resonances is the time it takes a Kelvin wave to cross the basin and a first-meridional-mode (ℓ = 1) Rossby wave to return; thus, even though the amplitude of the 90-day winds vary significantly, the 90-day resonance can be frequently excited in the real IO, as evidenced by satellite-observed and OGCM-simulated sea level. The presence of the Indian subcontinent enhances the influence of equatorial variability in the north IO, especially along the west coast of India. The Maldives Islands weaken the 180-day resonance amplitude but have little effect on the 90-day resonance, because they fall in its “node” region. Additionally, resonance at the 120-day period for the n = 1 mode is noted.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2015-06-01
    Beschreibung: We perform eddy-resolving and high vertical resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper-ocean currents. Two main simulations are discussed: solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform, and solution 2, with realistic coastlines and an annual cycle of wind forcing varying zonally. Somewhat surprisingly, solution 1 produces the more realistic DEC; the large, vertical-scale currents [equatorial intermediate currents (EICs)] are found over a large zonal portion of the basin, and the small, vertical-scale equatorial currents [equatorial deep jets (EDJs)] form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. This study demonstrates that both types of currents arise from the rectification of DEIV, consistent with previous theories. The authors also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, this study finds that the main reason for this weaker DEIV is the use of realistic coastlines in solution 2. It remains to be determined what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
    Print ISSN: 0022-3670
    Digitale ISSN: 1520-0485
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...