ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 2938-2945 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A three-dimensional direct numerical simulation (using a fully spectral method) of compressible convection of an infinite Prandtl number fluid in a wide box with dimensions 5×5×1 was conducted. Depth-dependent viscosity, thermal expansivity, and thermal conductivity have been included in order to model deep-seated processes in the Earth's mantle. Solutions have been obtained up to a surface Rayleigh number of 4×107. There is a remarkable contrast between the dynamics of the upper and lower boundary layers. Very few cylindrical plumes are developed at the bottom but they merge collectively to form a strong upwelling, which pulses chaotically. Viscous and adiabatic heating are found to become important at high Rayleigh numbers, larger than 107. These results have important implications on the thermal structure of early Earth, where there might have been dramatic effects from intense mechanical heating near the top boundary layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 2105-2115 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The use of characteristics-based methods for the advection-dominated regimes in thermal convection is investigated. An operator-splitting method applied to the advection–diffusion equation for the very large Péclet (Pe) number regime is presented. In this approach two partial differential equations representing both the purely hyperbolic and the parabolic components must be solved simultaneously. This method has been compared with (1) the Galerkin approximation, (2) the streamwise upwinding Petrov–Galerkin method, and (3) the characteristics-based method using the Lagrangian formulation for the time-derivative operator of the advection–diffusion equation. Solution accuracy of the operator-splitting method improves with larger Pe, while the accuracy of other methods deteriorates with Pe. For the nonlinear problem of two-dimensional thermal convection the Lagrangian method is found to be most computationally efficient. With this Lagrangian method, time-dependent, thermal convection solutions of extremely high Rayleigh number (Ra), up to 3×109, for infinite Prandtl number are obtained. For an aspect ratio of 1.8 the exponent in the scaling of the Nusselt number (Nu) with Ra in time-dependent convection is determined to be 0.301 in the hard turbulent regime and is smaller than in the soft turbulent regime. The behavior of this exponent as a consequence of the transition to hard turbulence agrees with experimental findings. Horizontal Fourier spectra of the thermal fields outside the boundary layers reveal a transition in the high wave-number domain from 1/k to 1/k2 in the transition from soft to hard turbulent regimes. Analysis of the kinetic energy spectra E(k) shows an asymptotic decay of E(k) close to k−2, for large k, spanning over two decades in wave number for strongly time-dependent convection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...