ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 36 (1995), S. 2972-2984 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Integrable systems in 1+1 dimensions arise from the KP hierarchy as symmetry reductions involving square eigenfunctions. Exploiting the residual gauge freedom in these constraints new integrable systems are derived. They include generalizations of the hierarchy of the Kundu–Eckhaus equation and higher-order extensions of the Yajima–Oikawa and Melnikov hierarchies. Constrained modified KP flows yield further integrable equations such as the hierarchies of the derivative NLS equation, the Gerdjikov–Ivanov equation, and the Chen–Lee–Liu equation. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 37 (1996), S. 6213-6219 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The integrable Kadomtsev–Petviashvili (KP) hierarchy is compatible with generalized k-constraints of the type (Lk)−=∑i qi∂−1xri. A large class of solutions—among them solitons—can be represented by Wronskian determinants of functions satisfying a set of linear equations. In this paper we shall obtain additional conditions for these functions imposed by the constraints. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 3050-3057 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An electron cyclotron resonance oxygen plasma discharge was used to anisotropically etch photoresist at a low substrate temperature (−100 °C). The results of using a lower temperature are seen in a reduction in lateral etch rate, with concomitant improvement in anisotropy. Langmuir probe and flux analysis at the substrate with a quadropole mass spectrometer was used to characterize the plasma stream as a function of the operating conditions. The plasma stream flux was composed of approximately 10 times as many reactive oxygen neutrals as O2+ ions. Etch rate was found to be strongly affected by the ion power density impinging on the substrate. Four mechanisms were identified that may contribute to lateral etching. Lateral etching was observed to decrease by the combined application of rf substrate bias and low substrate temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8299-8309 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In many cases, the widely used matrix inversion approach to describe the spectral interference in collisionally perturbed molecular spectra is not feasible if the particular molecular interactions do not allow the sudden impact approximation (infinitely short collision duration). To overcome this problem, we present a time domain model that describes collisional broadening and narrowing phenomena without requiring the sudden approximation. The key element of the model is a Monte Carlo type sampling process to quantify the temporal autocorrelation of the molecular dipole moment. The spectrum is then obtained numerically via fast Fourier transform. The model does not require a frequency-dependent relaxation operator; the finite collision duration is simply an adjustable parameter in the time domain process. Our approach, which is generally applicable to any set of transition lines, is derived from concepts of both conventional quantum-mechanical and semiclassical theory of line interference. Coherent transfer effects from rotationally inelastic collisions are described as randomly occurring events which affect frequency, amplitude, and phase of the sampled oscillation. Effects of vibrational dephasing are included as well. To demonstrate its feasibility, we apply the model here to the 2.7 μ absorption spectrum of carbon dioxide diluted in high density air (ρ=43–485 amagat, T=297–754 K). The successful modeling of the experimental data, especially the full collapse of P and R branches at ultrahigh densities, accounts for interbranch mixing and for incoherent effects. The calculations make extensive use of the new Hitran (HITEMP) molecular database. Results include revised estimates for the collision duration of CO2 with nitrogen and oxygen at room temperature. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 5995-6004 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Absorption spectra from a mixture of 320 ppm CO2 in synthetic air (79% N2, 21% O2) were collected in the region from 3500 cm−1 to 4000 cm−1 under conditions in the range of 100–1000 atm and 295–900 K. At 295 K, both bands of the (1001), (0201) Fermi dyad show the collapse of P and R branches into a single nearly Lorentzian spectral feature as a result of interbranch line-mixing. At elevated temperatures, the presence of interbranch mixing is also clearly evident as is the presence of several hot bands. The experimental data are modeled using two methods for simulating line-mixed spectra; first, the usual line-by-line approach which relies on the binary impact approximation, and second, a simple band-averaged model proposed by Hartmann and L'Haridon [J. Chem. Phys. 103, 6467 (1995)]. The energy corrected sudden (ECS) approximation is used to generate the relaxation matrix in the first approach. Comparison with the measurement shows that the ECS method does not fit the high density data satisfactorily when adjustable parameters from the literature are used; the level of interbranch mixing must be decreased by about a factor of 2 relative to intrabranch mixing and at least 5% dephasing must be added to the ECS matrix. With these changes, the room temperature data are modeled satisfactorily, but significant discrepancies are still present in the high temperature spectra. On the other hand, the simpler band-averaged model does provide a reasonable estimate of the spectra for all temperatures when best fit values are used for mixing and broadening, but the low density data are not reproduced as well as with the ECS model. Data from high pressure absorption measurements in a 1% NO in N2 mixture as well as a 0.5% CH4 in N2 mixture are also presented without analysis, showing the effects of interbranch line-mixing in these spectra. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 62 (1991), S. 168-177 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A self-magnetically Baitch-theta -insulated ion diode was investigated and optimized at the pulsed power line KALIF (2 MV, 50 ns, 2 Ω) to produce a focused and pulsed high-intensity proton beam for generation of high-power density in matter. This diode is characterized by an azimuthal insulating magnetic field that is generated by the diode current. The beam is neutralized by electrons from the cathode vanes, so that neither a gas filled drift space nor foils are needed. The beam therefore propagates in vacuum and repeated shots are possible without changing parts. The protons had energies up to 1.8 MeV and the proton content in the ion beam was about 50%. The maximum total diode current was about 800 kA and its efficiency was as high as 70%. The beam microdivergence was determined to be 1.1°. The radial dependence of the proton current density was measured and is proportional to r−1.74. This result was confirmed by 2D quasistatic particle-in-cell simulations. The focus was optimized by adjusting the anode shape and the gap geometry and by decreasing the beam divergence. The FWHM diameter of the focus at a distance of 300 mm was about 10 mm and the resulting focused power density was 0.13 TW/cm2. The effect of the gap distance on focusing and impedance was investigated and it was found necessary to adjust the gap to better than 0.1 mm over the total 30-cm-diam anode to obtain the best performance. The electron loss and the corresponding erosion at the posts that hold the anode was reduced. The lifetime is now limited by the plastic anode insert to 10–15 pulses. Based on these results a "small Baitch-theta diode'' is suggested for which a power density increase of a factor of 3 is estimated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-21
    Description: Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r plasma  = 30 cm, n o  = 10 12  cm −3 , T e  = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I 〉 πr 2 B 0 c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-28
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-06
    Description: We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-14
    Description: In this work, we report on a highly variable, compact, and light high-vacuum sputter deposition unit designed for in situ experiments using synchrotron radiation facilities. The chamber can be mounted at various synchrotron beamlines for scattering experiments in grazing incidence geometry. The sample position and the large exit window allow to perform x-ray experiments up to large q values. The sputtering unit is easy to mount on existing experimental setups and can be remote-controlled. In this paper, we describe in detail the design and the performance of the new sputtering chamber and present the installation of the apparatus at different 3rd generation light sources. Furthermore, we describe the different measurement options and present some selected results. The unit has been successfully commissioned and is now available for users at PETRA III at DESY.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...