ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-18
    Description: Modern electronic devices utilize charge to transmit and store information. This leaves the information susceptible to external influences, such as radiation, that can introduce short timescale charge fluctuations and, long term, degrade electronic properties. Encoding information as spin polarizations offers an attractive alternative to electronic logic that should be robust to randomly polarized transient radiation effects. As a preliminary step towards radiation-resistant spintronic devices, we measure the spin properties of n-GaAs as a function of radiation fluence using time-resolved Kerr rotation and photoluminescence spectroscopy. Our results show a modest to negligible change in the long-term electron spin properties up to a fluence of 1 × 10 14 (5 MeV protons)/cm 2 , even as the luminescence decreases by two orders of magnitude.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-13
    Description: Time-resolved Faraday rotation measurements have proved transformative in the investigation of spin dynamics in semiconductors. In materials with spin lifetimes which are on the order of, or greater than, the laser repetition time, the collective effect of spin polarization due to the whole pump pulse train becomes important. Here, we discuss a relative phase shift which results from these spins. We derive and experimentally validate a closed-form expression which describes this phase shift and characterize it throughout parameter space. A spin lifetime measurement based on this phase shift is described, and we discuss situations in which the model used must be augmented to be applicable.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-12
    Description: It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H 2 O 2 stress and treated with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-10
    Description: GaSb quantum dots (QDs) in a GaAs matrix are investigated with cross-sectional scanning tunneling microscopy (X-STM) and photoluminescence (PL). We observe that Al-rich capping materials prevent destabilization of the nanostructures during the capping stage of the molecular beam epitaxy (MBE) growth process and thus preserves the QD height. However, the strain induced by the absence of destabilization causes many structural defects to appear around the preserved QDs. These defects originate from misfit dislocations near the GaSb/GaAs interface and extend into the capping layer as stacking faults. The lack of a red shift in the QD PL suggests that the preserved dots do not contribute to the emission spectra. We suggest that a better control over the emission wavelength and an increase of the PL intensity is attainable by growing smaller QDs with an Al-rich overgrowth.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-12
    Description: GaSb quantum dots (QDs) in a GaAs matrix are investigated with cross-sectional scanning tunneling microscopy (X-STM) and photoluminescence (PL). We observe that Al-rich capping materials prevent destabilization of the nanostructures during the capping stage of the molecular beam epitaxy (MBE) growth process and thus preserves the QD height. However, the strain induced by the absence of destabilization causes many structural defects to appear around the preserved QDs. These defects originate from misfit dislocations near the GaSb/GaAs interface and extend into the capping layer as stacking faults. The lack of a red shift in the QD PL suggests that the preserved dots do not contribute to the emission spectra. We suggest that a better control over the emission wavelength and an increase of the PL intensity is attainable by growing smaller QDs with an Al-rich overgrowth.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-06
    Description: We investigate the electron spin dynamics of n -type c -axis oriented bulk zinc oxide (ZnO) by using time-resolved Kerr rotation and resonant spin amplification measurements. Calculating resonant spin amplification using an anisotropic spin dephasing model reveals that there are two species involved in the spin dynamics, which we attribute to conduction and impurity-bound electron spins, respectively. We find that the impurity-bound electron spin dephasing mechanism is strongly anisotropic due to anisotropic exchange interactions. The identification of the two spin species and their dephasing mechanisms is further supported by the temperature, power, and wavelength dependence of the spin coherence measurements.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-03
    Description: We demonstrate a method to extend the range of pulsed laser spin noise measurements to long spin lifetimes. We use an analog detection scheme with a bandwidth limited only by laser pulse duration. Our model uses statistics and Bloch-Torrey equations to extract the Lande g-factor, Faraday cross-section σ F , and spin lifetime τ s , while accounting for finite detector response. Varying the magnetic field with a fixed probe-probe delay yields τ s when it is longer than the laser repetition period. Varying the probe-probe delay with a fixed field produces a time-domain measurement of the correlation function.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-27
    Description: In this work, we investigated the structural and magnetic properties of both as-deposited and post-annealed Cu-doped ZnO thin films for better understanding the possible mechanisms of room-temperature ferromagnetism (RT-FM) in ZnO-based diluted magnetic oxides. All of the films have a c -axis-oriented wurtzite structure and display RT-FM. X-ray photoelectron spectroscopy results showed that the incorporated Cu ions in as-deposited films are in 1+ valence state merely, while an additional 2+ valence state occurs in post-annealed films. The presence of Cu 2+ state in post-annealed film accompanies a higher magnetization value than that of as-deposited film and, in particular, the magnetization curves at 10 K and 300 K of the post-annealed film separate distinctly. Since Cu 1+ ion has a filled 3d band, the RT-FM in as-deposited Cu-doped ZnO thin films may stem solely from intrinsic defects, while that in post-annealed films is enhanced due to the presence of CuO crystallites.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...