ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (1)
  • 1
    Publication Date: 2014-07-11
    Description: The electronic structure of a quintuple layer (QL) of Bi 2 Te 3 is calculated using the first-principles pseudopotential method. It is found that the band gap of an isolated QL is considerably larger than that of bulk Bi 2 Te 3 . The electronic transport of the QL is, then, evaluated using the semiclassical Boltzmann theory within the relaxation time approximation. By fitting the energy surface from first-principles calculations, a suitable Morse potential is constructed and used to predicate the lattice thermal conductivity via equilibrium molecular dynamics simulations. By optimizing the carrier concentration of the system, the ZT of Bi 2 Te 3 QL can be enhanced to a relatively high value. Moreover, the ZT value exhibits strong temperature dependence and can reach as high as 2.0 at 800 K. This value can be further increased to 2.2 by the substitution of Bi atoms with Sb atoms, giving nominal formula of (Bi 0.25 Sb 0.75 ) 2 Te 3 . The significantly enhanced ZT value makes QL a very appealing candidate for thermoelectric applications.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...