ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 11324-11335 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Single particle dynamics of water confined in a nanopore is studied through computer molecular dynamics. The pore is modeled to represent the average properties of a pore of Vycor glass. Dynamics is analyzed at different hydration levels and upon supercooling. At all hydration levels and all temperatures investigated a layering effect is observed due to the strong hydrophilicity of the substrate. The time density correlators show, already at ambient temperature, strong deviations from the Debye and the stretched exponential behavior. Both on decreasing hydration level and upon supercooling we find features that can be related to the cage effect typical of a supercooled liquid undergoing a kinetic glass transition. Nonetheless the behavior predicted by mode coupling theory can be observed only by carrying out a proper shell analysis of the density correlators. Water molecules within the first two layers from the substrate are in a glassy state already at ambient temperature (bound water). The remaining subset of molecules (free water) undergoes a kinetic glass transition; the relaxation of the density correlators agree with the main predictions of the theory. From our data we can predict the temperature of structural arrest of free water. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 342-346 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A molecular dynamics simulation of the microscopic structure of water confined in a silica pore is presented. A single cavity in the silica glass has been modeled as to reproduce the main features of the pores of real Vycor glass. A layer analysis of the site–site radial distribution functions evidences the presence in the pore of two subsets of water molecules with different microscopic structure. Molecules which reside in the inner layer, close to the center of the pore, have the same structure as bulk water but at a temperature of 30 K higher. On the contrary the structure of the water molecules in the outer layer, close to the substrate, is strongly influenced by the water–substrate hydrophilic interaction and sensible distortions of the H-bond network and of the orientational correlations between neighboring molecules show up. Lowering the hydration has little effect on the structure of water in the outer layer. The consequences on experimental determinations of the structural properties of water in confinement are discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 9859-9867 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A molecular dynamics simulation of water confined in a silica pore is performed in order to compare it with recent experimental results on water confined in porous Vycor glass at room temperature. A cylindrical pore of 40 Å is created inside a vitreous SiO2 cell, obtained by computer simulation. The resulting cavity offers water a rough hydrophilic surface and its geometry and size are similar to those of a typical pore in porous Vycor glass. The site-site distribution functions of water inside the pore are evaluated and compared with bulk water results. We find that the modifications of the site-site distribution functions, induced by confinement, are in qualitative agreement with the recent neutron diffraction experiment, confirming that the disturbance to the microscopic structure of water mainly concerns orientational arrangement of neighboring molecules. A layer analysis of MD results indicates that, while the geometrical constraint gives an almost constant density profile up to the layers closest to the interface, with a uniform average number of hydrogen bonds (HB), the hydrophilic interaction produces the wetting of the pore surface at the expenses of the adjacent water layers. Moreover, the orientational disorder together with a reduction of the average number of HB persists in the layers close to the interface, while water molecules cluster in the middle of the pore at a density and with a coordination similar to bulk water. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...