ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 6927-6939 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We studied the optical transient bleaching of ∼40 A(ring), ammonia-passivated CdS clusters in a polymer with nanosecond and picosecond pump-probe techniques. The transient bleaching spectra behave differently in different time regimes. Within the 30-ps pump laser pulse width, we tentatively attribute the bleaching to the exciton-exciton interaction, and the magnitude can be enhanced by surface passivation. On time scales of tens of picoseconds and longer following the pump pulse, when only trapped electron-hole pairs remain from the pump excitation, the bleaching is due to the interaction between such a trapped electron-hole pair and a bound exciton produced by the probe light. Experimentally we determined that roughly one trapped electron-hole pair can bleach the excitonic absorption of the whole CdS cluster. We developed a theoretical model which considers the effects of the trapped electron-hole pair on the energy of the exciton transition and its oscillator strength. We found that, when a trapped electron and hole are present, the lowest exciton absorption is red-shifted from the original exciton absorption, and this transition has a weak oscillator strength, which explains the observed efficient bleaching. The model also predicts that a trapped electron is more efficient than a trapped hole for bleaching the excitonic absorption of CdS clusters in the size regime considered here. This is confirmed by pulse radiolysis results. Finally, we discuss the possible effects of charged surface defects on the linear absorption spectra of semiconductor clusters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 5568-5577 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Self-broadened nitrogen isotropic Q(J) Raman linewidths have been inverted to obtain effective rotation–translation (R–T) state-to-state rate constants using the energy corrected sudden (ECS) formalism. These rate constants are discussed as a function of the rotational levels J and temperature T. Collisional Q(J) line shifts have been investigated by high-resolution inverse Raman spectroscopy (IRS) over a wide temperature range. Semiclassical calculations lead to a clear understanding of their J and T dependence. This exhaustive study of both diagonal and off-diagonal relaxation matrix elements has allowed us to calculate the collisionally narrowed Q branch at high pressure. New measurements of N2 Q branch at high pressure have been performed by IRS. The good agreement of ECS profiles with IRS data, for various pressures and temperatures, underlines the consistency of the present R–T ECS scaling analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 90 (1989), S. 5392-5398 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Accurate coupled state calculations of line coupling are performed for infrared lines of carbon monoxide perturbed by helium. Such calculations lead to both real and imaginary line couplings. For the first time, the effect of this imaginary line couplings, connected with state-to-state rotational phase coherences, on infrared band shape, is analyzed. An extension of detailed balance principle to the complex plane is suggested from the present computed off-diagonal cross sections. This allows us to understand the physical mechanism underlying the weak effect of phase coherences on CO–He infrared band shape.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 5916-5925 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In order to understand the influence of H2O on the stimulated Raman Q-branch spectra of nitrogen in combusting media, an exhaustive theoretical and experimental study has been carried out. Starting from a semiclassical model, particularly convenient at high temperature, the Q-line broadening and shifting coefficients have been calculated over a wide temperature range and for a large number of lines. Stimulated Raman Spectra (SRS) measurements have allowed us to test these calculated line broadening coefficients and thus establish the high accuracy of semiclassical values. The theoretical broadening coefficients have been inverted to deduce state-to-state rotational relaxation rates by using two types of fitting laws. A partial test of the resulting Q-branch profiles has been realized at moderate pressures leading to a discrimination between these two laws. Furthermore, the effect of rotational energy transfers on collisionally narrowed profiles at higher densities has been simulated and compared with the pure N2 case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 2163-2171 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The absorption beyond the ν3-band head of CO2 broadened by argon has been measured at room temperature. The absorption exhibits a strong sub-Lorentzian behavior (several orders of magnitude) resulting from collisionally induced line interferences which transfer intensity from this wing region to the ν3-band center. This wing absorption region implies detuning frequencies from resonances much larger than the reciprocal duration of collision. Consequently, finite duration of collisions in rotational energy transfers and initial correlations must be included in absorption calculation. A line-by-line coupling theory accounting for both these effects has been recently proposed [J. Chem. Phys. 89, 625 (1988)] and is applied here to a detailed study of the CO2–Ar collisional system. A convenient generalized detailed balance correction is introduced in this theory to overcome the limitation of the assumed resonant character of the energy transfer in the short time limit with respect to the thermal time ( β(h-dash-bar))−1. The calculated absorption is in quantitative agreement with experiment. The origin and the nature of the empirical correcting factor currently used in similar studies are clearly established on a firm physical basis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 3436-3446 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Line coupling coefficients resulting from rotational excitation of CO perturbed by He are computed within the infinite order sudden approximation (IOSA) and within the energy corrected sudden approximation (ECSA). The influence of this line coupling on the 1–0 CO–He vibration–rotation band shape is then computed for the case of weakly overlapping lines in the 292–78 K temperature range. The IOS and ECS results differ only at 78 K by a weak amount at high frequencies. Comparison with an additive superposition of lorentzian lines shows strong modifications in the troughs between the lines. These calculated modifications are in excellent quantitative agreement with recent experimental data for all the temperatures considered. The applicability of previous approaches to CO–He system, based on either the strong collision model or exponential energy gap law, is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 87 (1987), S. 6070-6077 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Glassy structures of water were generated by rapidly quenching configurations of 64 and 343 molecules of liquid water. The potential energy was then expanded through quadratic order around local minima generated this way and properties of the resulting harmonic system were calculated. The results were used to test the extent to which the structure of liquid water is similar to that of a harmonic aqueous glass. The radial distribution functions for the glass are remarkably similar to those of the liquid. The vibrational density of states for the glassy water exhibits a gap between 300 and 400 cm−1. The normal modes below 300 cm−1 correspond to molecular translations while the modes above 400 cm−1 are ascribed to molecular librations. Translational modes are almost entirely responsible for the broadening of oxygen–oxygen radial distribution function of the quenched configuration. They are also primarily responsible for the broadening of other radial distribution functions. Vibrational density of states leads to classical and quantum free energies for the harmonic system equal −9.62±0.12 and −8.89±0.12 kcal/mol, respectively, at T=300 K. Both free energies were found to be insensitive to sample size and to the configurational differences between the quenched structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Numerous comparisons between predictions of the model presented in part I of this paper and experimental H2O infrared linewidths are presented. It is shown that our model, contrary to those used up to now, gives accurate results for H2O room-temperature line broadening by O2 and Ar, and for high rotational quantum-number lines by N2. First accurate experimental widths and intensities of some H2O ν2-band lines in the 400–900 K temperature range are also presented. Detailed analysis of the data demonstrates the great influence of a "resonance overtaking'' mechanism. The latter results from the modifications of both the perturber rovibrational population distribution and kinetic energy with temperature; it strongly enhances the contributions of the collision-induced rotational transitions involving significant energy jumps. This mechanism is well accounted for by our model and quantitatively explains the unusually slow decrease of some linewidths with temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 6584-6589 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The influence of CO2 and H2O on the rotational relaxation processes of N2 in ternary mixtures N2–CO2–H2O is investigated. The efficiency of these perturbers is responsible for significant modifications of the state-to-state relaxation rates and broadening coefficients. Flame data are well reproduced by taking into account these modifications. The role of these minor species in the determination of temperatures in premixed flames is analyzed. The present relaxation model allows us to understand why the discrepancy between observed and calculated coherent anti-Stokes Raman spectroscopy (CARS) spectra in flames is sometimes resolved by empirically adding a dephasing component to pure nitrogen linewidths. Moreover, this model improves the accuracy of CARS temperature measurements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 6908-6909 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An S1 ring-N(CH3)2 torsional potential function with V2(approximately-equal-to)3700 and V4(approximately-equal-to)−1450 cm−1 is deduced from the published spectrum [Grassian et al., J. Chem. Phys. 90, 3994 (1989)] of 4-N,N-dimethylaminobenzonitrile. The equilibrium conformation is twisted by 25°, and there are barriers of 185 and 3900 cm−1 at the planar and perpendicular conformations. Similar results are obtained for the (CD3)2 derivative, and for N,N-dimethylaniline, 3-N,N-dimethylaminobenzonitrile, and 4-(trifluoromethyl)-N,N-dimethylaniline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...