ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 61 (1987), S. 354-358 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: LO phonon-overdamped plasmon coupled modes in n-type epitaxial films of β-SiC have been measured in the carrier concentration range from 6.9×1016 to 2×1018 cm−3. The carrier concentrations and damping constants are determined by line-shape fitting of the coupled modes and compared with the values derived from Hall measurements. The concentrations obtained from the two methods agree fairly well. The Faust–Henry coefficient determined from the fitting is 0.35. The line-shape analysis of the coupled mode has shown that the dominant scattering mechanisms in β-SiC are deformation-potential and electro-optic mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 2722-2724 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temperature dependence of the band gap in InAsyP1−y (y=0–0.67) has been determined by photoluminescence, x-ray diffraction, and absorption spectra measurements. We found that the measured data within the temperature range of 77–300 K can be expressed by the equation proposed by O'Donnell and Chen. The band gap at 77 K is given by Eg=1.407−1.073y+0.089y2, while the compositional dependence of the band gap observed at 300 K, agrees with the values previously reported. We confirmed that changes in temperature caused a slight change in the bowing parameters, and hence found that the band gap temperature dependence of InAsyP1−y (y=0–1) varies very little with changes in composition (2.5–3.5×10−4 eV/K). © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-01
    Description: The magnetic structure and the effect of a magnetic field on its domain structure were investigated in a magnetoelectric Y-type hexaferrite, Ba 1.3 Sr 0.7 CoZnFe 11 AlO 22 , by means of mapping with a micro-focused and circularly polarized X-ray beam in the resonant X-ray diffraction. It was revealed that this hexaferrite exhibits a magnetic order characterized by two distinct antiferromagnetic components: incommensurate helical and commensurate collinear ones, which can be explained as the development of the so-called alternating longitudinal conical structure. A multi-domain state due to the handedness of the helical component, i.e., spin-chirality, is transformed into nearly a mono-domain one by using only a magnetic field. Furthermore, the sign of the spin-chirality in the mono-domain state is reversed by reversing the sign of a magnetic field. These results demonstrate that the spin-chirality in this hexaferrite can be manipulated by a magnetic field alone at room temperature.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-26
    Description: We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-type two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g (2) (0) value of 0.008 is achieved with π -pulse quasi-resonant excitation.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...