ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (3)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 7118-7120 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Co/Cu multilayers were prepared by dc magnetron sputtering, varying the individual layer thicknesses tCu≅tCo in the range of t=0.6–50 nm. Additionally, the ratio tCo/tCu was varied as tCo/tCu=0.4–4. Giant magnetoresistance (GMR) and saturation ferromagnetic (FM) resistivity for the first three antiferromagnetic (AFM) coupling maxima were measured as a function of temperature in the range of T=4.2–300 K, with the GMR values ranging up to 115%. For equidistant Co and Cu layers the saturation resistivity at T=4.2 K matches the size effect dependence in single thin films. Even when changing the single layer thickness or the Co/Cu thickness ratio by an order of magnitude a uniform normalized temperature dependence ρ(T,t)/ρ(T0,t) is found and no shunting effects are observed for tCo,tCu〈10 nm. The results favor the following GMR model: The resistivity in the FM (aligned) state is dominated by (hybridized) majority spin electrons, the states of which at similar s like regions of the Fermi surfaces of face-centered-cubic majority Co and Cu allow them to transmit the Co/Cu interfaces with a large mean free path λ. The temperature dependence of λ is governed by the transmittance and it is therefore uniform. Diffuse scattering at crystalline defects at the interfaces reduces λ in accordance with the size effect in single layers. The transition to the AFM state reduces the large λ to the dimensions of Cu–Co↑, ↓–Cu trilayers, that can be understood in terms of a temperature independent size effect, too. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 8169-8174 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the effect of the dipolar magnetic coupling (also known as Néel coupling or "orange-peel" coupling) in tunneling magnetoresistive (TMR) elements. With an in situ scanning tunneling microscope we directly accessed the roughness of the films and found a close correspondence between the values for the coupling fields determined by the magneto-optical Kerr effect and the ones computed on the basis of the measured morphology parameters. We confirm an increase of the dipole coupling between the magnetic layers with decreasing barrier thickness as predicted by the model. Deviations from the theoretical predictions are observed for the case of thinner soft magnetic layers, which can be explained by reduced magnetization in very thin films. We demonstrate the importance of dipolar coupling for understanding the magnetic behavior of TMR elements by comparing TMR curves for optimized and nonoptimized structures. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 3144-3146 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The spin-coherent quantum transport through multiwall carbon nanotubes contacted by ferromagnetic Co pads is investigated experimentally. At 4.2 K, the devices show a remarkable increase of the magnetoresistance (MR) ratio with decreasing junction bias, reaching a maximum MR ratio of 30% at a junction bias current of 1 nA. The experimental results suggest the transport to be dominated by spin-dependent tunneling processes at the Co/nanotube interfaces and governed by the local magnetization. We also observe an asymmetry of the magnetoresistance peak position and width which is attributed to a local exchange biasing in the electrode material. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...