ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: High-resolution electron energy loss spectra (HREELS) of NO adsorbed at low temperature on the Ru(001) surface are reported with particular emphasis on the low coverage regime. The improved resolution compared to earlier studies allowed one to clearly separate the various vibrational bands and to establish correlations among them. The experimental data are analyzed with the help of linear combination of Gaussian-type orbitals local density functional model cluster calculations. We conclude that the loss peak of the low coverage samples at 1130 cm−1 can be attributed to the stretching vibrations of upright oriented μ3-bridge nitrosyl species which are bound in an unusual configuration, i.e., via the oxygen atom. The dominating feature at small coverages around 1400 cm−1, corresponding to the intramolecular vibration of NO moieties at the same site but bound via nitrogen, is calculated in agreement with experiment. Bent structures of the adsorbate are energetically less favored both for the μ3-ON and μ3-NO adsorption complexes. In contrast to the adsorption on the threefold hollow sites, NO molecules in the on-top position at Ru(001) bear a positive charge and vibrate at much higher frequencies. The importance of Pauli repulsion for the vibrational frequencies of adsorbed species is emphasized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 95 (1991), S. 9266-9276 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The coverage dependence of the sticking probability of argon on a cold Ru(001) surface is studied experimentally by thermal-desorption spectrometry, and simulated by classical molecular dynamics with an empirical pairwise-additive potential-energy function. Experimentally, a dramatic linear increase in sticking as a function of Ar coverage is observed between 0 and 0.7 monolayer for a 300 K thermal beam of Ar incident normal to the surface; at higher coverages the sticking probability gradually saturates to approach unity beyond 2 monolayers. The linear regime is reproduced with near-quantitative accuracy by the simulations, with a simple perfect islanding model. The origin of the enhanced sticking lies primarily in efficient energy transfer to the adsorbate, due to perfect mass matching and the deformability of the overlayer. In the simulations at incident energies above 50 kJ mol−1 the sticking on the monolayer diminishes to almost zero, and collision-induced desorption is observed. Additionally, several interesting dynamical effects which have experimental relevance emerge from the simulations, such as prolonged impacts and sticking mediated by attractive interactions at the edge of adsorbate islands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...