ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (3)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 3441-3447 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report the use of focused acoustic beams to eject discrete droplets of controlled diameter and velocity from a free-liquid surface. No nozzles are involved. Droplet formation has been experimentally demonstrated over the frequency range of 5–300 MHz, with corresponding droplet diameters from 300 to 5 μm. The physics of droplet formation is essentially unchanged over this frequency range. For acoustic focusing elements having similar geometries, droplet diameter has been found to scale inversely with the acoustic frequency. A simple model is used to obtain analytical expressions for the key parameters of droplet formation and their scaling with acoustic frequency. Also reported is a more detailed theory which includes the linear propagation of the focused acoustic wave, the coupling of the acoustic fields to the initial surface velocity potential, and the subsequent dynamics of droplet formation. This latter phase is modeled numerically as an incompressible, irrotational process using a boundary integral vortex method. For simulations at 5 MHz, this numerical model is very successful in predicting the key features of droplet formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1472-1483 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A previously derived analytical model for the small-scale structure of turbulence is reformulated in such a way that the energy spectrum may be computed. The model is an ensemble of two-dimensional (2-D) vortices with internal spiral structure, each stretched by an axially symmetric strain flow. Stretching and differential rotation produce an energy cascade to smaller scales in which the stretching represents the effect of instabilities and the spiral structure is the source of dissipation at the end of the cascade. The energy spectrum of the resulting flow may be expressed as a time integration involving only the enstrophy spectrum of the time evolving 2-D cross-section flow, which may be obtained numerically. Examples are given in which a k−5/3 spectrum is obtained by this method. The k−5/3 inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the 2-D enstrophy spectrum. The results are found to be insensitive to time dependence of the strain rate, including even intermittent on-or-off strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-18
    Description: For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...