ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2890-2900 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The general theory of Part I is applied to the the specific case of scattering of a wave incident along the axis of Hill's spherical vortex. The full asymptotic solution to the initial-value problem is calculated. Results agree with the general approach, showing that the conditions required for the latter to hold apply in the case of Hill's spherical vortex. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 2876-2889 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: When an acoustic wave is incident on a three-dimensional vortical structure, with length scale small compared with the acoustic wavelength, what is the scattered sound field that results? A frequently used approach is to solve a forced wave equation for the acoustic pressure, with nonlinear terms on the right-hand side approximated by the bilinear product of the incident wave and the undisturbed vortex: we refer to this as the "acoustic analogy" approximation. In this paper, we show using matched asymptotic expansions that the acoustic analogy approximation always predicts the leading-order scattered sound field correctly, provided the Mach number of the vortex is small, and the acoustic wavelength is a factor of order M−1 larger than the scale of the vortex. The leading-order scattered field depends only on the vortex dipole moment. Our analysis is valid for acoustic frequencies of the same order or smaller than the vorticity of the vortex. Over long times, the vortex may become significantly disturbed by the incident acoustic wave. Additional conditions are derived to maintain validity of the acoustic analogy approximation over times of order M−1, long enough for motion of the vortex to be significant on the length scale of the acoustic waves. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...