ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (3)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 89 (1988), S. 1651-1655 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A nonequilibrium thermodynamic theory known as extended irreversible thermodynamics is used to obtain the frequency- and wave vector-dependent generalized viscosity for dilute suspensions. Comparison with a microhydrodynamical calculation by Bedeaux, Kapral, and Mazur allows one to obtain explicit expressions for the coefficients appearing in the macroscopic generalized viscosity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 34 (1993), S. 2290-2316 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The domain of applicability of one-point kinetic theory is enlarged by admitting two-point distribution functions or some of their moments as extra state variables. Kinetic equations governing the time evolution in the extended state space are introduced as particular realizations of the nonlinear Onsager–Casimir equation. This abstract equation collects the common structure of equations arising in the analysis of compatibility of two levels of description (e.g., kinetic theory and equilibrium thermodynamics or kinetic theory and hydrodynamics). The structure consists of a Poisson bracket and two potentials. The Poisson bracket expresses kinematics, the first potential, called the thermodynamic potential, generates the time evolution and links the theory with thermodynamics. The second potential, called the dissipative potential, introduces dissipation into the time evolution that is compatible with the kinematics and thermodynamics. To find a particular realization of the nonlinear Onsager–Casimir equation means to identify kinematics (Poisson bracket) and the two potentials, that correspond to a particular system and situations under consideration. This way of introducing kinetic equations has two advantages. First, the kinetic equations are guaranteed to be intrinsically consistent and compatible with more macroscopic theories. Second, the clear physical meaning of kinematics and the two potentials, together with the possibility of discussing them separately, allows one to use a broad range of physical insights and considerations to specify them for particular systems and situations of interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 1571-1584 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A higher-order hydrodynamics for material motion in fluids, under arbitrary nonequilibrium conditions, is constructed. We obtain what is a generalized—to that conditions—Fick-type Law. It includes a representation of Burnett-type contributions of all order, in the form of a continuous-fraction expansion. Also, the equation includes generalized thermodynamic forces, which are characterized and discussed. All kinetic coefficients are given as correlations of microscopic mechanical quantities averaged over the nonequilibrium ensemble, and then are time- and space-dependent as a consequence of accounting for the dissipative processes that are unfolding in the medium. An extended evolution equation for the density of particles is derived, and the conditions when it goes over restricted forms of the type of the telegraphist equation and Fick's diffusion equation are presented. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...