ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-01
    Description: The possibility of creating reduced-order models for canonical wall-bounded turbulent flows based on exploiting energy sparsity in frequency domain, as proposed by Bourguignon et al. [Phys. Fluids26, 015109 (2014)], is examined. The present letter explains the origins of energetically sparse dominant frequencies and provides fundamental information for the design of such reduced-order models. The resolvent decomposition of a pipe flow is employed to consider the influence of finite domain length on the flow dynamics, which acts as a restriction on the possible wavespeeds in the flow. A forcing-to-fluctuation gain analysis in the frequency domain reveals that large sparse peaks in amplification occur when one of the possible wavespeeds matches the local wavespeed via the critical layer mechanism. A link between amplification and energy is provided through the similar characteristics exhibited by the most energetically relevant flow structures, arising from a dynamic mode decomposition of direct numerical simulation data, and the resolvent modes associated with the most amplified sparse frequencies. These results support the feasibility of reduced-order models based on the selection of the most amplified modes emerging from the resolvent model, leading to a novel computationally efficient method of representing turbulent flows.
    Print ISSN: 1070-6631
    Electronic ISSN: 1089-7666
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...