ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 70 (1999), S. 2500-2506 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Many sensors have been applied to the problem of measuring neutral atomic oxygen fluxes in low Earth orbit. The techniques used to date tend to suffer from several key disadvantages, variously: large mass and power budgets, large size, high cost, the ability to make only one measurement and poor time resolution. In this article preliminary results from ground-based testing of a novel atomic oxygen sensor based on a semiconducting metal oxide are reported. Such sensors are simple and relatively cheap while also requiring small power and mass budgets and, most importantly, are reusable. The sensors have been used in laboratory experiments to investigate the axial variation of atomic oxygen flux in a pulsed laser atomic oxygen source; the results compare well with readings taken with a carbon-coated quartz crystal microbalance. A small instrument based on these sensors has been designed and built for application on the UK's STRV-1c microsatellite. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have constructed a vertical-cavity, surface-emitting laser with a voltage-controlled quantum well absorber in the upper mirror stack. If the lasing wavelength of this device is designed to be slightly longer than the absorber band edge, sharp negative differential resistance can be obtained in the absorber under lasing conditions. We present strong experimental evidence that this behavior arises from redshifting of the absorption excitonic peak due to the quantum confined Stark effect. Design criteria are proposed for applications including high speed modulation and self-pulsation. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-10-01
    Description: We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when the film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the hydrogel, which can be useful information when designing applications that pursue or require the absorption of biomolecules or pH-sensitive molecules within different regions of the film.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...