ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 1915-1928 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper the stability of annular pressure-driven parallel flows of two liquids sandwiching a free cylindrical interface is considered. For small to moderate Reynolds numbers, the interface is susceptible to capillary and interfacial wave instabilities, the latter instability caused by a jump in viscosity at the interface. It is shown that favorable velocity profiles in both liquids may stabilize capillary breakup of the interface and suppress the axisymmetric interfacial wave instability. A long-wave analysis leads to the physical mechanism responsible for stabilization of capillary breakup. This physical mechanism is a generalization of that by which capillary breakup is stabilized by interfacial shear in an annular film of a single liquid. Stabilization of intermediate wavelengths is studied with a mechanical energy analysis, which leads to a description of the energetic processes at work.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 680-682 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Layered double diffusive flow patterns in a laterally heated stably stratified liquid are considered in a configuration which allows for steady states to exist. For the heat/salt system, these flows are characterized by the thermal and solutal Rayleigh numbers RaT and RaS, or equivalently by RaT and the buoyancy ratio Rρ. The bifurcation structure of steady patterns with respect to RaT is computed for two cases: fixed RaS and fixed Rρ. For the first case, results in N. Tsitverblit and E. Kit [Phys. Fluids A 5, 1062 (1993)], are computed and extended, and it is shown that many of the previously found flow patterns are unstable; only in a small interval of RaT, multiple (linearly) stable steady states exist. For the second case, the physical relevance of the unstable steady states with respect to the evolution of the flow toward a stable steady state is demonstrated. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1517-1517 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 615-631 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The instability of an arbitrarily shaped zonal jet on a midlatitude β-plane is considered within a two-layer quasi-geostrophic model with O(1) linear friction. Depending on the horizontal and vertical shear of the jet, it is susceptible to both barotropic and baroclinic instabilities. The linear stability boundaries are determined numerically for a parameter regime relevant to the Gulfstream. The weakly nonlinear (finite amplitude) evolution of the instabilities is shown to be governed by a Ginzburg-Landau equation and for arbitrary jet shapes the coefficients in this equation are computed numerically. The finite amplitude state is shown to become unstable to Benjamin-Feir sideband instabilities. The mixed baroclinic/barotropic character of the primary instability is crucial to this sideband instability which is shown to lead to complicated spatio-temporal behavior of the jet. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...