ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 174-179 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Through the principal use of the reduced magnetohydrodynamic version of the finite aspect ratio code [L. A. Charlton et al., J. Comput. Phys. 86, 270 (1990)], an m/n=1/1 resistive kink mode was poloidally rotated with the accompanying rotational shear. It was observed that the growth rate of this unstable mode can either decrease or increase as the applied equilibrium rotation is increased to near poloidal sonic speeds. Shear in the poloidal rotation profile is stabilizing, but only if the destabilizing effects of bulk rotation can be overcome. Therefore, the mode's stability was sensitive to the location of the rotation's peak relative to the eigenmode's spatial extent. The destabilizing effects of bulk rotation are apparently a rotationally enhanced beta, and the stabilizing effects appear to be caused by exceeding a critical rotational shear spatially averaged over the eigenmode structure. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of externally imposed and self-generated poloidal flows on turbulence and magnetohydrodynamic (MHD) activity are examined in the context of the possible Electric Tokamak (ET) [Phys. Plasmas 6, 4722 (1999)] plasmas and (circularized) DIII-D-like [Fusion Technol. 8, 441 (1985)] discharges. Global gyrokinetic particle simulations and reduced MHD calculations respectively show that ion temperature gradient driven turbulence (ITGDT) and resistive internal kink MHD activity can be reduced and/or suppressed with experimentally achievable externally imposed flows for possible ET start-up plasmas. Global gyrokinetic particle simulations of ITGDT also serve to demonstrate that self-generated flows are necessary to yield experimentally relevant radial correlation lengths in the case of DIII-D-like discharges. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Using x-ray diffraction techniques, we measure the root-mean-square width of the buried crystalline/amorphous Si(001)/SiO2 interface, as a function of oxide thickness. We find that the interface width decreases with increasing oxide thickness; the oxide growth process kinetically smoothens the buried interface. We also find a difference between the rate of smoothing for wet and dry oxides. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 4043-4049 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The collisional heating rate of a fully ionized plasma driven by a strong electromagnetic pump wave is re-examined both analytically and with two-dimensional particle-in-cell (PIC) simulations. The high frequency conductivity model of Dawson and Oberman [J. Dawson and C. Oberman, Phys. Fluids 5, 517(1962)] is extended for the case in which the quiver velocity vo=eE/mωo is much larger than the thermal velocity vth and its equivalence to the results of Silin [V. P. Silin, Sov. Phys. JETP 20, 1510 (1965)] is shown. The Dawson and Oberman model is reduced to two-dimensions for comparison with the PIC simulations. Excellent agreement between the theory and the simulations for vo/vth≤1 is obtained. However, when vo/vth(very-much-greater-than)1 and the excursion amplitude xo=eE/mω2o is larger than the Debye length λD, the simulations show enhancements in the collision frequency from the theory. A possible mechanism for this enhancement is provided. © 1994 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Electric Tokamak (ET), currently under construction at the University of California–Los Angeles, is designed to rotate poloidally via a radial current induced by fast wave rf heating fast enough to bifurcate the plasma into a global "H mode" ("high confinement mode"). A global gyrokinetic code is used to explore and illustrate some of the effects on ion temperature gradient turbulence. The realistic radial electric field required to completely suppress these modes for ET parameters is demonstrated to be 〈−30 V/cm at its maximum near the half radius. The effects of both a poloidally supersonic bulk rotation threshold and the shear in this rotation near that supersonic threshold were shown to be important in reducing these modes. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 516-526 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper numerical solutions of Zakharov-type equations for lower-hybrid (LH) waves, including pumping at the long wavelengths and dissipation at short wavelengths in the form of dissipative cavitons are described. The caviton is a quasistationary structure undergoing many sequences of collapse due to dissipation, created by ion–wave interactions, which is compensated for by constant pump action. The possibility of trapping of short-wavelength LH oscillations by much broader density cavitons is investigated both analytically and numerically. Analytic self-similar solutions corresponding to collapse of such cavitons are constructed and demonstrate cascading to shorter wavelengths, which develops faster than the three-dimensional (3-D) quasiclassical cavity contraction. Numerical solutions show the development of deep caviton modulation due to the instability of quasiclassical collapse. Results of the numerical and analytical investigation are used to explain the recent observations of cavity formation in the auroral ionosphere, and show that the measured structures could indeed arise from quasiclassical LH collapse. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 3148-3162 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The modulational instability and collapse of waves in the vicinity of the lower-hybrid resonance including both magnetosonic and lower-hybrid waves are investigated by analytical and numerical methods. The mechanism leading to the modulational instability is the nonlinear coupling of lower-hybrid waves with the much lower-frequency quasineutral density perturbations via the ponderomotive force. The result is a filamentation of the high-frequency field producing elongated, cigar-shaped nonlinear wave packets aligned along the magnetic field with the plasma expelled outside (cavities). The analytical self-similar solutions describing cavity collapse are obtained and compared with the results of numerical simulation for both two- and three-dimensional cavity geometries. It is shown that in three-dimensional solutions the transverse, with respect to the magnetic field, contraction remains prevailing. The possibility of ion acceleration as the result of the lower-hybrid collapse is discussed and detailed comparison is made with the observations of the phenomena in the auroral ionosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 30 (1987), S. 1767-1788 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Particle dynamics and field behavior associated with a perpendicular collisionless supercritical and viscous shock are investigated by use of numerical simulation. A one-dimensional, relativistic, fully electromagnetic and nonperiodic particle simulation code (for both electrons and ions) is used where self-consistent space-charge effects and induced effects are totally included. The principal field patterns of the shock (trailing wave train, ramp, and foot region) are studied in detail and are shown to have scale lengths mainly dictated by ion dynamics; the behavior of the corresponding plasma currents associated with the different field components is also presented. Ions are shown to suffer successive "acceleration–trapping–detrapping'' at the shock front, and locally in the trailing wave train of the downstream region through combined effects of the electrostatic and magnetic fields. While detrapped, the reflected ions describe very large Larmor orbits and cause a ring distribution; a large rapid nonstochastic ion heating results from this ion gyration. This heating (resistivity-free) is the main source of dissipation and is responsible for large field damping. Competitive effects such as particle stochasticity, particle trapping, wave damping, wave overtaking, and dispersion effects are shown to interact with each other and to affect the overall dissipation mechanism. Comparison with previous works is also discussed. Various Mach number situations are considered, leading to the definition of a transitory regime between subcritical and supercritical regimes and of a corresponding critical threshold of the electrostatic field. In contrast with the supercritical regime, the subcritical regime is characterized by a low density of trapped-reflected ions, a broad ion distribution function with a weak tail, and a weak adiabatic bulk ion heating.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 29 (1986), S. 821-836 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The behavior of strong magnetosonic waves propagating perpendicular to a static field B0 is investigated within the frequency range ωci〈ω〈ωlh; ωci,ω, and ωlh are, respectively, the ion cyclotron, the pump wave, and the lower-hybrid frequencies. A one-dimensional, relativistic, fully electromagnetic, particle simulation code (for both electrons and ions) is used, where self-consistent effects are totally included. During the buildup phase, a longitudinal electric field develops and attains a nonlinear level which strongly distorts its shape so that many harmonics are produced. This is followed shortly by ion trapping, which simultaneously enhances the wave overtaking (the wave crests overtaking the wave troughs) and produced a strong wave damping. A very large ion acceleration accompanied by a strong heating (mainly nonstochastic) perpendicular to B0 results; the electrons exhibit only poor heating associated with their adiabatic compression. The dynamics of both particle species, the consequences of the wave–particle energy transfer and the particle viscosities, are studied in detail. Competitive and self-consistent effects such as space-charge effects, wave overtaking, ion trapping, and wave damping are investigated and compared with previous models; the mechanisms by which these various phenomena interact on each other are analyzed. Characteristics of nonstochastic and stochastic ion heating are also discussed. Our computations show that if sufficient intensity is reached, one is not constrained to use lower-hybrid waves or cyclotron harmonic waves to heat a plasma efficiently and that any frequency below ωlh can be used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 2699-2704 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the sheath regions strong electric fields can develop that accelerate ions to sufficient energy to cause sputtering and increase the plasma impurities to an intolerable level. Simulations of these sheaths are performed with a one-and-two-half-dimensional (y,vx,vy,vz) electrostatic particle model with a homogeneous magnetic field tilted in relation to y; guiding-center electrons and full dynamic ions are used. The plasma is taken to be bounded by metallic walls in which a time-dependent potential difference V(t) is applied and the average energies and flux of ions hitting the walls are computed. The results show that the magnetic fields inhibits the sputtering caused by D atoms. Comparisons of the present model with previous work, which used a Vlasov model and fluid approach, are also made with good agreement in the appropriate regime.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...