ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 1674-1694 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Because a spectral model describes distributions of turbulent energy and stress in wave-number space or, equivalently, in terms of a distribution of length scales, it can account for the variation of evolution rates with length scale. A spectral turbulence model adapted from a model introduced by Besnard, Rauenzahn, Harlow, and Zemach is applied here to homogeneous turbulent flows driven by constant mean-flow gradients and to free decay of such flows. To the extent permitted by the experimental data, initial turbulent spectra are inferred, and their evolutions in time are computed to obtain detailed quantitative predictions of the spectra, relaxation times to self-similarity, self-similar spectrum shapes, growth rates, and power-law time dependence of turbulent energies and dominant-eddy sizes, and integral data, such as the components of the Reynolds stress tensor and the Reynolds stress anisotropy tensor. The match to experimental data, within the limits of experimental uncertainties, is good. Some qualifications on the limits of validity of the model are noted. Among phenomena encountered for which the spectral description provides quantitative understanding are the convergence of the anisotropy tensor to a nonzero limit under conditions of free decay (i.e., incomplete return to isotropy, implying a Rotta constant of unity) and the apparent "return to anisotropy,'' observed after an anisotropy tensor vanishes due to a temporary cancellation of positive and negative parts of a spectrum, which evolve at different rates. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 2846-2858 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The relaxation in time of an arbitrary isotropic turbulent state to a state of statistical equilibrium is identified as a transition to a state which is invariant under a symmetry group. We deduce the allowed self-similar forms and time-decay laws for equilibrium states by applying Lie-group methods (a) to a family of scaling symmetries, for the limit of high Reynolds number, as well as (b) to a unique scaling symmetry, for nonzero viscosity or nonzero hyperviscosity. This explains why a diverse collection of turbulence models, going back half a century, arrived at the same time-decay laws, either through derivations embedded in the mechanics of a particular model, or through numerical computation. Because the models treat the same dynamical variables having the same physical dimensions, they are subject to the same scaling invariances and hence to the same time-decay laws, independent of the eccentricities of their different formulations. We show in turn, by physical argument, by an explicitly solvable analytical model, and by numerical computation in more sophisticated models, that the physical mechanism which drives (this is distinct from the mathematical circumstance which allows) the relaxation to equilibrium is the cascade of turbulence energy toward higher wave numbers, with the rate of cascade approaching zero in the low wave-number limit and approaching infinity in the high wave-number limit. Only the low-wave-number properties of the initial state can influence the equilibrium state. This supplies the physical basis, beyond simple dimensional analysis, for quantitative estimates of relaxation times. These relaxation times are estimated to be as large as hundreds or more times the initial dominant-eddy cycle times, and are determined by the large-eddy cycle times. This mode of analysis, applied to a viscous turbulent system in a wind tunnel with typical initial laboratory parameters, shows that the time necessary to reach the final stage of decay is astronomically large, and would require a wind tunnel of astronomical length. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...