ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • American Institute of Physics (AIP)  (3)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 83 (1985), S. 5727-5734 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The perturbational method developed in the present paper is applied to the interaction between a polymer and a small molecule using a few simple model systems. The validity of our method is studied by comparing the results obtained with the perturbation method and the tight binding SCF crystal orbital method. The total electronic energies and charge distributions obtained are in good agreement with each other for the two methods. This result leads to the conclusion that the present perturbational approach is promising for application to interactions between real polymers and impurities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 2717-2726 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The coupled Hartree–Fock (CHF) equations in second order are derived to calculate dynamic polarizabilities and hyperpolarizabilities for infinite periodic chains. The analytical expressions for the second derivatives of the perturbed crystal orbitals with respect to the quasimomentum k are developed. The first and second derivatives are required on behalf of the definition of the perturbation operator describing the effect of the time-dependent electric field on the electronic structure of the polymer. The computer program has been applied to calculate the tensor elements of the second-harmonic generation and the optical rectification for the model chain poly(water) and the conjugated π-electron system poly(carbonitrile), respectively. The CHF-results are compared with uncoupled Hartree–Fock (UCHF) calculations. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 10248-10264 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present the formalism for the correction of the band structure for correlation effects of polymers in the framework of a localized orbital approximation, using the quasiparticle model. For this purpose we use in an ab initio framework Møller–Plesset perturbation theory in second order, the coupled cluster doubles method, and its linear approximation. The formalism is applied to a water stack and two different forms of a water chain as model systems to test the reliability of the approximations involved. From our previous work we know that, e.g., in polyacetylene difficulties due to the localizability of the canonical crystal orbitals do not arise from the π or π* bands, but from bands of σ symmetry. Thus we concentrate in this work again on polyacetylene as an example of a realistic polymer. We find that the localized orbital approximation is quite useful also in the case of band structure corrections due to correlation effects. However, the coupled cluster calculations, in particular, turn out to be computationally very costly for infinite systems. But it seems to us that localized orbital approximations are at the moment the only way to make coupled cluster calculations on realistic polymers with covalent bonds between the unit cells possible at all. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...