ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-03
    Description: [1]  CMIP5 multimodel ensemble projection of midlatitude storm track changes has been examined. Storm track activity is quantified by temporal variance of meridional wind and sea level pressure (psl), as well as cyclone track statistics. For the Southern Hemisphere (SH), CMIP5 models project clear poleward migration, upward expansion, and intensification of the storm track. For the Northern Hemisphere (NH), the models also project some poleward shift and upward expansion of the storm track in the upper troposphere/lower stratosphere, but mainly weakening of the storm track toward its equatorward flank in the troposphere. Consistent with these, CMIP5 models project significant increase in the frequency of extreme cyclones during the SH cool season, but significant decrease in such events in the NH. Comparisons with CMIP3 projections indicate high degrees of consistency for SH projections, but significant differences are found in the NH. Overall, CMIP5 models project larger decrease in storm track activity in the NH troposphere, especially over North America in winter, where psl variance as well as cyclone frequency and amplitude are all projected to decrease significantly. In terms of climatology, similar to CMIP3, most CMIP5 models simulate storm tracks that are too weak and display equatorward biases in their latitude. These biases have also been related to future projections. In the NH, the strength of a model's climatological storm track is negatively correlated with its projected amplitude change under global warming, while in the SH, models with large equatorward biases in storm track latitude tend to project larger poleward shifts.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-28
    Description: Extratropical cyclones cause much of the high impact weather over the mid-latitudes. With increasing greenhouse gases, enhanced high-latitude warming will lead to weaker cyclone activity. Here we show that between 1979 and 2014, the number of strong cyclones in Northern Hemisphere in summer has decreased at a rate of 4% per decade, with even larger decrease found near northeastern North America. Climate models project a decrease in summer cyclone activity, but the observed decreasing rate is near the fastest projected. Decrease in summer cyclone activity will lead to decrease in cloud cover, giving rise to higher maximum temperature, potentially enhancing the increase in maximum temperature by 0.5 K or more over some regions. We also show that climate models may have biases in simulating the positive relationship between cyclone activity and cloud cover, potentially under-estimating the impacts of cyclone decrease on accentuating the future increase in maximum temperature.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-11
    Description: [1]  Cyclones are responsible for much of the high impact weather in the extratropics, thus how they will change under global warming is of great concern. Several studies have used the multi-model climate simulations conducted under Phase 5 of the Coupled Model Intercomparison Project (CMIP5) to examine such changes. One study suggested that the frequency of strong cyclones is projected to decrease over the North Pacific, while another concluded that this frequency will increase. [2]  A single tracking algorithm has been used to derive cyclone statistics from 23 CMIP5 simulations using two different definitions of cyclones: cyclones as minima in total sea level pressure (SLP), or cyclones as minima in SLP perturbations about a large scale, low frequency background. When cyclones are defined by total SLP, the frequency of deep cyclones over the Pacific is projected to increase, while if cyclones are defined as perturbations, this frequency is projected to decrease. These differences are shown to be due to a projected deepening of the climatological mean Aleutian low. [3]  In view of these results, it is important to critically assess how cyclones should be defined. Preliminary results suggest that among CMIP5 simulations, over the Pacific, both the projected changes in the frequency of high wind events and mean available potential energy are better correlated with the projected changes in the frequency of cyclones defined as perturbations. It is concluded that more research should be done to quantify and understand the impacts of the different definitions of cyclones.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-12
    Description: Ferroelectric nanowires are promising candidates for miniaturized ferroelectric devices. Some potential nanoscale applications of the nanowires, such as ultra high density ferroelectric memory, utilize their reversible polarization. To meet the ever increasing demand for low energy consumption, it is extremely desirable to reduce the operational fields associated with polarization reversal. In this Letter, we use first-principles-based simulations to explore an unusual route to polarization reversal that utilizes a combination of relatively low bias field and THz pulsed radiation. Such an approach allows for lower operational fields and may lead to other potential applications such as THz radiation sensing and remote switches.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-15
    Description: CMIP5 multimodel ensemble projection of midlatitude storm track changes has been examined. Storm track activity is quantified by temporal variance of meridional wind and sea level pressure (psl), as well as cyclone track statistics. For the Southern Hemisphere (SH), CMIP5 models project clear poleward migration, upward expansion, and intensification of the storm track. For the Northern Hemisphere (NH), the models also project some poleward shift and upward expansion of the storm track in the upper troposphere/lower stratosphere, but mainly weakening of the storm track toward its equatorward flank in the troposphere. Consistent with these, CMIP5 models project significant increase in the frequency of extreme cyclones during the SH cool season, but significant decrease in such events in the NH. Comparisons with CMIP3 projections indicate high degrees of consistency for SH projections, but significant differences are found in the NH. Overall, CMIP5 models project larger decrease in storm track activity in the NH troposphere, especially over North America in winter, where psl variance as well as cyclone frequency and amplitude are all projected to decrease significantly. In terms of climatology, similar to CMIP3, most CMIP5 models simulate storm tracks that are too weak and display equatorward biases in their latitude. These biases have also been related to future projections. In the NH, the strength of a model's climatological storm track is negatively correlated with its projected amplitude change under global warming, while in the SH, models with large equatorward biases in storm track latitude tend to project larger poleward shifts.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract A planar array of dipoles with matched loads in air backed by a ground plane at a quarter wavelength would become an absorber with a −10‐dB bandwidth of about 10%. Obviously, if the air substrate behind the dipoles is replaced by a dielectric substrate, the physical thickness of the absorber, saying a quarter wavelength, can be reduced. Meanwhile, as the incident waves illuminate on the absorber, the reflections are mainly from three ways, which are the air‐dielectric interface, the back scattering of the loaded dipole as a receiving antenna, and the ground plane. This paper shows that with the combination of the three reflections and a suitable dielectric constant together with its dipole separations, the −10‐dB bandwidth of the absorber increases to 20% and beyond. To further decrease the thickness of the dipole‐based absorber, inductive ground plane is introduced to replace the normal ground; phase analyses of the dipole‐based absorber with inductive ground is also given to explain the feasibility of the proposed technique. Both simulations and measurement results show that, with the proposed technique above, not only the thickness of the dipole‐based absorber can be decreased from a quarter wavelength to less than fifth wavelength, but also the −10‐dB bandwidth of the reflection can be enhanced from 20% to 48% or so.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-12
    Description: Storm tracks, defined as the preferred regions of extratropical synoptic-scale disturbances, have remarkable impacts on global weather and climate systems. Causes of interannual storm track variation have been investigated mostly from a troposphere perspective. As shown in this study, Northern Hemisphere winter storm tracks are significantly modulated by the tropical stratosphere through the Quasi-Biennial Oscillation (QBO). The North Pacific storm track (NPST) shifts poleward during the easterly QBO winters associated with a dipole change in the eddy refraction and baroclinicity. The North Atlantic storm track (NAST) varies vertically with a downward shrinking (upward expansion) in easterly (westerly) QBO winters associated with the change of the tropopause height. These results not only fill the knowledge gap of QBO-storm track relationship but also suggest a potential route to improve the seasonal prediction of extratropical storm activities owing to the high predictability of the QBO.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 10196-10211 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Grain growth in a polystyrene–polyisoprene block copolymer melt is studied by time-resolved depolarized light scattering after a quiescent quench from the disordered to the ordered state. At shallow quench depths, classical nucleation and growth kinetics are observed. Grains comprising the equilibrated ordered phase nucleate and grow by consuming the surrounding disordered phase. In contrast, deep quenches result in the formation of disorganized grains with an average order parameter that is well below the equilibrium value. Small angle neutron scattering and rheological experiments were conducted to facilitate the interpretation of the light scattering data. We show that the nonequilibrium grain structure formed during deep quenches is due to extremely high nucleation density. Under these circumstances, the space required for the formation of equilibrated grains is unavailable. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 12070-12081 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Time-resolved pump–probe spectra of 1,1′,3,3,3′,3′-hexamethyl-4,4′,5,5′-dibenzo-2,2′indotricarbocyanine (HDITC), a cyanine dye, in ethylene glycol are obtained using 11 fs and 90 fs duration pulses and analyzed in order to study its potential energy surfaces and vibrational dynamics. Ten oscillatory frequencies ranging from 30 cm−1 to 1400 cm−1 are observed in the 11 fs duration wavelength-resolved pump–probe measurements. They are assigned as fundamental vibrational frequencies of HDITC. The relative displacements of the equilibrium position between electronic excited and ground states along the resolved ten vibrational modes are determined through the wavelength dependence of the oscillatory amplitude. After considering the contributions of the ten vibrational modes, it is found that most of the Stokes shift and the early fast decays of the pump–probe signals are due to relaxation along the low frequency overdamped modes of the chromophore. The overdamped modes are characterized by the 90 fs pump–probe signals with the excitation at the red edge of the absorption band. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 587-589 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Separately grown p-type, intrinsic, and n-type GaAs at low temperatures as well as a combined p-i-n structure have been used to study the formation of As precipitates upon annealing at 800 °C. For the separate structures, least precipitates have been noticed in the n-type material. In contrast, the highest density of precipitates appears in the n region for the p-i-n structure. In addition, an obvious band depleted of precipitates, exists in the intrinsic region near the n-i interface. A general vacancy model, including Fermi level effect and crystal bonding strength (thermodynamic factor), has been developed to explain the current results as well as to predict As precipitation in various low temperature grown III–V heterostructures. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...